РАЗДЕЛ I. НАУКИ О ЖИВОМ И ПОЛИМЕРЫ

Задача 1

Туберкулез – социально значимое заболевание, уносящее ежегодно миллионы жизней по всему миру. Учитывая высокую устойчивость микобактерий к проводимой терапии, разработка новых лекарственных средств, направленных против возбудителя туберкулеза, становится приоритетной задачей современной фармакологии.

Препарат D-циклосерин (**Cyc**), $C_3H_6N_2O_2$, ингибирует фермент E1, отвечающий за ключевой этап метаболизма микобактерий – получение аминокислоты **B** (40.43% C и 7.93% H по массе) из канонической аминокислоты **A** (15.72% N, 35.91% O по массе). При этом обе аминокислоты могут быть ферментативно превращены микобактериями в интермедиат **C** (54.5% O по массе).

$$\begin{array}{c|c}
E1 & O \\
\hline
A & O_2, H_2O \\
\hline
-NH_3 & C & -NH_3
\end{array}$$

$$\begin{array}{c|c}
C_2, H_2O \\
\hline
-NH_3
\end{array}$$

$$\begin{array}{c|c}
B & NH_2
\end{array}$$

$$\begin{array}{c|c}
OH \\
NH_2
\end{array}$$

- **1.** Изобразите соединения A C. Учтите, что канонические аминокислоты являются S-стереоизомерами и участвуют в процессе биосинтеза белков.
- **2.** Все ферменты подразделяются на 6 классов. В листе ответов выберите класс ферментов, к которому относится E1.

Известно, что **Сус** имеет по две С-С и С-N связи, по одной С-О, С=О и N-О связи.

- 3. Изобразите гетероцикл, лежащий в основе циклосерина.
- **4.** Изобразите все возможные структуры **Cyc**, если известно, что атомы О в его молекуле максимально удалены друг от друга (то же касается и атомов N). Используйте допущение, что длины всех связей, кроме водородсодержащих, в **Cyc** одинаковы.

Механизм действия Сус подразумевает его структурную схожесть с веществом А.

5. Изобразите структуру **Cyc**, в наибольшей степени удовлетворяющей данному условию.

Наряду с соединением **B**, ключевым компонентом стенки микобактерий является аминокислотный остаток соединения **E**. **E** ($C_7H_{14}N_2O_4$) синтезируется из аминокислоты **D**, при этом **E** выступает предшественником канонической аминокислоты **F** (49.28% C по массе). Число типов неэквивалентных атомов, выявленных в **D** и **E** методом ЯМР-спектроскопии, идентично и составляет: C - 4, H - 5, N - 1.

6. Изобразите все возможные структуры D - F с учетом стереохимии.

Клеточная стенка микобактерий состоит из пептидогликана – гетерополимера, в котором полисахариды сшиты короткими пептидными цепочками.

7. Из аминокислот $\mathbf{D} - \mathbf{F}$ выберите те, которые позволяют формировать сшивки между различными олигопептидными фрагментами, тем самым задавая сложную пространственную структуру клеточной стенки микобактерий.

Другим препаратом для лечения туберкулеза является производное изоникотиновой кислоты – соединение \mathbf{X} , $\mathbf{C}_6\mathbf{H}_7\mathbf{N}_3\mathbf{O}$.

 ${f X}$ высоко эффективное лекарственное средство, однако оно довольно токсично. Метаболизм ${f X}$ с участием метаболита $W_1 - W_2$ в организме человека может быть представлен следующими последовательными уравнениями реакций:

$$X + W_1 - W_2 \rightarrow Y + W_2 - H (1);$$
 $Y + H_2O \rightarrow C_6H_5NO_2 + Z (2);$ $Z + W_1 - W_2 \rightarrow C_4H_8N_2O_2 + W_2 - H (3).$

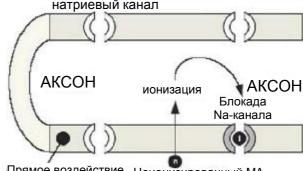
8. Установите структурные формулы соединений $\mathbf{X} - \mathbf{Z}$, если известно, что соединение $C_4H_8N_2O_2$ содержит идентичные атомы N.

Задача 2

При ряде медицинских процедур необходимо подавлять болевые ощущения. Одной из используемых для этого групп лекарственных средств являются местные анестетики — вещества, временно подавляющие возбудимость нервных окончаний в месте введения за счет обратимой блокады Na⁺-каналов. Современные анестетики имеют в структуре ароматическое кольцо и аминофрагмент, разделенные промежуточной цепью, включающей амидную либо сложноэфирную связь.

Анестетик прокаин может быть получен из нитротолуола, имеющего минимальное число сигналов в ПМР-спектре, по следующей схеме:

нитротолуол
$$K_2Cr_2O_7/H^+$$
 A $EtOH/H^+$ B Fe/HCl C $HO(CH_2)_2NEt_2/EtO^-$ прокаин


- 1. Изобразите структуры изомерных нитротолуолов, указав тот из них, который используется в синтезе прокаина.
- **2.** Приведите структурные формулы соединений ${\bf A} {\bf C}$ и прокаина. Другим распространенным местным анестетиком является лидокаин.

3. Одностадийный метаболизм обоих анестетиков катализируется ферментами, принадлежащими к одному классу. Укажите класс этих ферментов и приведите структуру(ы) продукта(-ов) метаболизма лидокаина, если известно, что из прокаина образуется метаболит $C_7H_7NO_2$, ответственный за развитие аллергии на препарат.

Для лидокаина более характерен протекающий в печени окислительный метаболизм с участием цитохрома Р450, включающий однотипные реакции.

- **4.** Изобразите структуры метаболитов лидокаина, если N низкомолекулярный продукт, а интермедиат **L2** изомерен **L1** (67.16% C, 12.78% O по массе), в ПМР-спектре которого число и мультиплетность сигналов такая же, как в спектре лидокаина, а их химические сдвиги практически не отличаются.
- **5.** Зависимость содержания препарата в организме от времени после введения называют фармакокинетическим профилем. В листе ответов укажите профили лидокаина и прокаина, обосновав выбор.
- **6.** Местные анестетики являются слабыми основаниями ($pK_a = 7.8$ для лидокаина и 8.9 для прокаина). Рассчитайте доли их нейтральной и ионизированной форм в плазме крови (pH 7.4).

Действие анестетика на Na⁺-канал: молекула препарата может проникать через липидную мембрану внутрь нервной клетки только в нейтральной форме, где она может связываться с рецептором канала только в ионной форме.

Прямое воздействие Неионизированный МА на мембрану проходит через мембрану

- 7. Принимая, что как диффузию, так и действие на рецептор можно описать кинетикой первого порядка, а также, что водородный показатель внутри и вне нервной клетки одинаков, выведите формулу для оценки оптимума рН действия анестетика (начальный момент времени, система далека от равновесия).
- **8.** Выберите в листе ответов возможный способ ускорения достижения терапевтического эффекта анестетиков.

Задача 3

Интересным свойством некоторых полимерных материалов является способность к восстановлению после механических повреждений. Так, при нагревании поврежденного образца полимера А его основная цепь разрушается по при ретро-реакции Дильса-Альдера, a последующем охлаждении полимер восстанавливается, залечивая повреждения.

1. Приведите схему реакции, протекающей при нагревании А (R не изменяется).

Для самовосстановления без нагревания используют другой подход: к материалу добавляют подходящий мономер в стеклянных микросферах и катализатор. При разрушении образца мономер выделяется из микросфер и под действием катализатора образует прочный материал, заполняющий трещины.

Для самозалечивающихся полиэфиров используют изготовления смесь мономеров В1 и В2. В1 – диэпоксид, производное терефталевой кислоты (60.43% С, 34.50% О, 5.07% Н по массе, один ПМР-сигнал от ароматических протонов, молекулярная масса менее 500 г/моль). В2 – тиол симметричного строения (36.09% С, 29.59% О, 4.67% H, 29.65% S по массе, менее 6 SH-групп в молекуле). Самовосстановление наиболее эффективно при эквимолярном соотношении эпоксидных и тиольных групп в материале.

- **2.** Приведите по одной возможной структуре **B1** и **B2**, а также продукта их взаимодействия (катализатор амин).
- 3. Напишите уравнение реакции синтеза В2 из предшественников.
- **4.** Сколько содержится (в моль/г) эпоксидных групп в **B1** и тиольных групп в **B2**? Рассчитайте оптимальное соотношение **B1** : **B2** по массе.
- **5.** В полиэфир были введены **B1** (3.0% по массе) и **B2** в стехиометрическом соотношении. Считая, что прочность материала пропорциональна объемной доле полимера, оцените снижение прочности полиэфира из-за добавки низкомолекулярных компонентов (плотности **B1** и **B2** равны 1.25 г/см³, полиэфира 1.1 г/см³).

В полимере С обратимо разрывающиеся и образующиеся водородные связи способны поглощать энергию, предотвращая необратимые повреждения материала. При этом полиметиленовые цепи обеспечивают необходимую взаимную ориентацию фрагментов, препятствуя частичной потере прочности при таких реорганизациях.

- **6.** Каково максимальное количество водородных связей, образующихся в **C** в расчете на мономерное звено? Сколько из них обеспечивают прочность материала?
- 7. Сколько энергии способен поглотить за счет обратимого разрыва водородных связей 1 см³ материала из С (плотность 0.9 г/см³, энергия водородной связи 20 кДж/моль)? С какой максимальной высоты можно уронить на этот образец плиту массой 1 кг, чтобы избежать необратимого повреждения полимера (считайте, что за время удара энергия успевает распределиться по всему объему образца)?

РАЗДЕЛ II. ФИЗИЧЕСКАЯ ХИМИЯ

Задача 1

Управление процессами испарения и конденсации жидкости открывает возможность синтеза, очистки и хранения веществ. Давление насыщенного пара p при температуре T связаны с нормальной температурой кипения T_0 при давлении $p_0 = 1$ атм. = $101325~\Pi a = 760~\text{мм}$ рт. ст. по формуле:

$$\ln \frac{p}{p_0} = -\frac{\Delta H_{\text{\tiny MCII}}}{R} \left(\frac{1}{T} - \frac{1}{T_0} \right),$$

где R = 8.31 Дж/моль·K; T и T_0 выражены в кельвинах [K].

1. Определите, сколько Па составляет 1 мм рт. ст.

Рассмотрим некоторые следствия зависимости давления насыщенного пара от температуры.

- **2.** Во избежание реакций термолиза (при перегонке веществ) температуры кипения при нормальном давлении должны лежать в пределах 50–100°С. При более высоких температурах кипения перегонку рекомендуют проводить в вакууме.
- а) Оцените давление, создаваемое водоструйным насосом при 17°C, если оно равно давлению насыщенного пара воды при этой температуре.
- b) Предположим, что давление в системе после подключения водоструйного насоса уменьшилось в 10 раз ($p = 0.1p_0$): на сколько градусов уменьшится температура кипения ДМСО (температура кипения 189°C при 1 атм).
- с) Уже при 150°C из ДМСО начинают образовываться два вещества в мольном отношении 1:1. Одно из веществ содержит на атом больше, а другое на атом меньше чем ДМСО. Составьте уравнение этой реакции.

Одной из перспективных технологий является создание сорбционных холодильников. Камера холодильника охлаждается в процессе непрерывного испарения воды, обеспечиваемого присутствием водопоглотителя.

- **3.** Пусть в качестве поглотителя используется безводный $CaCl_2$.
- а) Составьте уравнения первых трех реакций, являющихся стадиями процесса поглощения воды осушителем; предложите способ его регенерации.
- b) Приведите примеры еще двух веществ, пригодных в качестве осушителей.
- **4.** Оцените сколько времени может храниться кумыс при температуре работы холодильника t = 1 °C, полагая, что скорость деградации подчиняется уравнению

Вант-Гоффа с параметром $\gamma = 2$. На упаковке указано, что при t = 8°C срок годности составляет 60 часов.

- **5.** Для осуществления реакций в водной среде при высоких температурах используют герметичные стальные контейнеры (бомбы), способные выдерживать давления до 100 атм. Эквивалентом такого устройства на любой кухне выступает скороварка, с рабочей температурой 112°C.
- а) Определите давление пара в скороварке.
 Манты по-казахски отваривают над кипящей водой 30 мин.
- b) При температуре 104°C для того, чтобы приготовить манты требуется 20 мин. Определите показатель уравнения Вант-Гоффа γ по этим данным.

Справочная информация:

ДМСО (диметилсульфоксид)

 $\Delta H_{\text{исп}}(\text{H}_2\text{O}) = 44.01 \text{ кДж/моль};$

10

 $\Delta H_{\text{исп}}(\text{ДМСО}) = 57.28 \text{ кДж/моль}.$

Уравнение Вант-Гоффа имеет вид: $\frac{v_1}{v_2} = \gamma^{\frac{t_1-t_2}{10}}$, где v_1 и v_2 – скорости реакции при температурах t_1 и t_2 , соответственно.

Задача 2

Для реакций замещения в квадратных комплексах Au, Pd и Pt, Basolo F. и Badley W. предложили бимолекулярный механизм, идущий по двум потокам, для которых $k_{\rm эксп} = k_{\rm H_2O} + k_{\rm X}$ –C $_{\rm X}$ –. В случае реакции

$$M(dien)Cl^{n+} + Br^{-} \rightarrow M(dien)Br^{n+} + Cl^{-}$$
 (1)

получены данные (dien – ди(β -аминоэтил)амин; M = Au, Pd, Pt):

С(Br¯), моль/л	$2 \cdot 10^{-2}$	5.10^{-2}	8.10^{-2}
k_{Au}	3.5	8.0	12.5
k_{Pd} · 10^3	1.0	1.0	1.0
$k_{Pt} \cdot 10^4$	1.8	3.3	4.8

- **1.** Вычислите $k_{H,O}$ и k_{Br} для Au, Pd, Pt.
- **2.** Вычислите вклад (α , %) k_{H_2O} в $k_{\rm эксп}$ и изобразите график $\alpha = f(C_{\rm Br}^-)$.

3. С учетом псевдопорядка по H₂O выведите кинетическое уравнение реакции

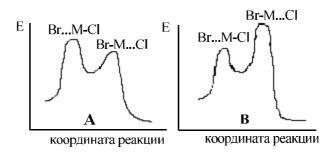
$$M(Et_4dien)Cl^{n+} + Br^- \rightarrow M(Et_4dien)Br^{n+} + Cl^-$$
 (2)

(Et₄dien – бис(β -диэтиламиноэтил)амин), если $k_{\text{эксп}} = k_{\text{H}_2\text{O}}$, а механизм:

$$AC1^{n+} + 2H_2O \Rightarrow ACl(H_2O)_2^{n+}$$
 (k₁, k₋₁);

$$ACl(H_2O)_2^{n+} \to A(H_2O)_2^{(n+1)+} + Cl^-$$
 (k₂);

$$A(H_2O)_2^{(n+1)+} + Br^- \rightarrow ABr^{n+} + Cl^- + 2H_2O$$
 (k₃), где $A - M(Et_4dien)$.


4. Выведите кинетическое уравнение реакции (1), если её механизм включает два потока: первый как у реакции (2), а второй:

$$ACl(H_2O)_2^{n+} + Br^- \rightarrow AClBr(H_2O)^{(n-1)+} + H_2O$$
 (k₄);

$$AClBr(H_2O)^{(n-1)+} \to ABr^{n+} + Cl^- + H_2O$$
 (k₅), где $A - M(dien)$.

Укажите причину отсутствия второго потока у реакции (2).

- **5.** Расположите металлы по мере роста α. Объясните порядок расположения, если потенциалы ионизации (эВ): 9.23 (Au), 8.34 (Pd), 8.90 (Pt).
- **6.** Укажите причину более высокой скорости у Au по сравнению с Pt, если для переходного состояния: $\Delta H_{Pt}^{\#} = 58$, $\Delta H_{Au}^{\#} = 55$ кДж/моль; $\Delta S_{Pt}^{\#} = -96$, $\Delta S_{Au}^{\#} = -17$ Дж/моль·К. Вычислите $\Delta G^{\#}$ при 298К.
- **7.** Среди приведенных для второго потока энергетических диаграмм Au и Pt выберите ту, которая относится к Au

Задача З

Тип химической связи во многом определяется природой взаимодействующих атомов. Если их электроотрицательности сильно разнятся, то образуется преимущественно ионная связь. Так, при высоких температурах в парах галогенидов щелочных металлов присутствуют «ионные молекулы» M^+X^- . Энергию образования подобной частицы можно выразить через энергию ионизации одного из атомов, сродство к электрону другого и энергию притяжения ионов.

атом	Na	K	F	C1
энергия ионизации (<i>IE</i>), эВ	5.14	4.34	17.4	13.0
сродство к электрону (EA) , эВ	0.54	0.47	3.45	3.61

Для справки: $1 \ \mathrm{эB} = 1.60 \cdot 10^{-19} \ \mathrm{Дж}$; энергия кулоновского взаимодействия двух ионов равна $E_{\mathrm{k}} = k z_1 z_2 / r_{12}$, где $k = 2.30 \cdot 10^{-28} \ \mathrm{Дж \cdot m}$, z_{i} — зарядовое число иона, r_{12} — расстояние между ионами; $9 + IE = 9^+ + \mathrm{e}^-$; $9 + \mathrm{e}^- = 9^- + EA$.

- **1.** В листе ответов укажите качественный вид зависимости энергии молекулы M^+X^- от расстояния между ионами и отметьте один или несколько факторов, определяющих такую зависимость.
- **2.** Используя приведенные данные, рассчитайте для четырех галогенидов щелочных металлов максимальное межъядерное расстояние M^+X^- , при котором образование молекул из атомов энергетически выгодно.
- **3.** Наблюдаемая длина связи в газообразном NaCl составляет 251 пм. Чему равна энергия (кДж/моль) образования этих молекул из атомов?
- **4.** При образовании кристаллического NaCl из атомов выделяется 626 кДж/моль энергии. Объясните разницу с предыдущим пунктом.
- **5.** Рассмотрим изолированную «ионную молекулу» $CaCl_2$. Рассчитайте энергию ее диссоциации на атомы, если энергия притяжения иона Ca^{2+} к иону Cl^- на равновесном расстоянии равна -9.79 эВ. Для справки: IE_1 (Ca) = 6.15 эВ, IE_2 (Ca) = 11.92 эВ.
- **6.** При некоторых условиях возможно существование галогенидов необычного состава. Так, энергия кристаллической решетки соединения CaF равна 820 кДж/моль. Проведите расчеты и сделайте вывод о его устойчивости относительно CaF₂, если при образовании кристаллического CaF₂ из простых веществ выделяется 1221 кДж/моль энергии, а при образовании $Ca_{(r)}$ и $F_{(r)}$ затрачивается 178 и 79 кДж/моль соответственно.

РАЗДЕЛ III. ОРГАНИЧЕСКАЯ ХИМИЯ

Задача 1

Ацетоуксусный эфир (**EAA**) используется в практике органического синтеза почти 150 лет, преимущественно для получения соединений типа **II** и **III** согласно реакциям, приведенным ниже на примере иодометана.

1. В таблице приведены значения pK_a для **EAA** и ряда кислот HX, сопряженных основаниям NaX. Учитывая эти значения, выберите основания NaX для превращения **EAA** в **II** или **III**.

Вещество	EAA	CH ₃ COOH	PhOH	C ₂ H ₅ OH	H_2
рК _а	10.7	4.8	10.0	15.9	36

2. Напишите структурные формулы **I** – **III**, учитывая данные ЯМР ¹Н для **II** и **III**. **II** – 1.05 м.д. (3H, триплет), 2.14 м.д. (3H, синглет), 2.47 м.д. (2H, квадруплет); **III** – 1.04 м.д. (3H, триплет), 2.38 м.д. (2H, квадруплет), 11 м.д. (1H, уш. синглет).

Возможность использования разнообразных электрофилов определяет многообразие соединений типа **I**, **II** и **III**. Например, следующая схема описывает превращения, которые начинаются с реакции **EAA** с окисью этилена:

3. Напишите структурные формулы соединений $\mathbf{A} - \mathbf{D}$ и \mathbf{X} , если известно, что спектр ЯМР ¹Н соединения \mathbf{C} содержит следующие сигналы: 2.08 м.д. (3H, синглет), 2.11 м.д. (2H, мультиплет), 2.50 м.д. (2H, триплет), 3.35 м.д. (2H, триплет).

Алкилирование **EAA** и его аналогов – основа синтеза таких важных продуктов как *цис*-жасмон (**IV**) (компонент дорогих парфюмерных композиций), жасминовая кислота (**V**, стимулятор роста растений) и других:

EAA
$$\frac{1) \text{ основание}}{2)}$$
 Вг $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{O})_2\text{CO}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{O})_2\text{CO}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{O})_2\text{CO}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{COO})_2\text{Pb}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{COO})_2\text{Pb}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{COO})_2\text{Pb}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ (CH}_3\text{COO})_2\text{Pb}}$ $E = \frac{1) 5\% \text{ NaOH}}{2) \text{ H}_3\text{O}^+}$ $E = \frac{1} 5\% \text{ NaOH}$ $E = \frac{1} 5\% \text{ NaOH}$

4. Напишите структурные формулы V, E-M с учетом стерео- и геометрической изомерии (там, где ее можно однозначно определить).

Задача 2

Камфора (**I**, $C_{10}H_{16}O$) известна на Востоке с древних времен, где использовалась в кулинарии, медицине и религиозных церемониях. Она содержится в древесине и листьях камфорного лавра *Cinnamomum camphora* (откуда выделяется в виде (+)-энантиомера), в эфирных маслах шалфея и некоторых видах полыни (в виде (–)-энантиомера). Первый синтез камфоры был осуществлен еще в начале XX века Комппа и Бредтом по приведенной схеме:

- **1.** Установите структурные формулы соединений **A K**, **X** если известно, что **A** содержит 62.07% C, 10.34% H и O; **B** имеет такое же количество атомов O, что и **A**, а количество атомов углерода вдвое больше. Соединения **D** и **E** циклические. **X** имеет молекулярную формулу $C_6H_{10}O_4$, в его спектре ЯМР ¹H присутствуют только два сигнала (триплет и квадруплет с относительной интенсивностью 3:2), а спектр ЯМР ¹³С показывает наличие в молекуле трех типов атомов углерода.
- **2.** Камфора, полученная этим методом, образуется в виде рацемической смеси. Укажите, на какой стадии синтеза требуется использовать оптически активный реагент (катализатор), чтобы получить оптически активную камфору.
- **3.** Молекула камфоры содержит циклогексановый фрагмент. В виде какой конформации (кресло, полукресло, твист, ванна) он находится в молекуле **I**?

При восстановлении **I** с помощью LiAlH₄ образуется смесь борнеола (**IVa**) и изоборнеола (**IVb**) в соотношении 9:91, а при использовании LiBH(s-Bu)₃ **IVa** и **IVb** образуются в соотношении 2:98.

4. Напишите структурные формулы **IVa** и **IVb**.

Древняя английская пословица

Свойство смартфонов и игровых приставок чувствовать пространство и изменение наклона консоли связано с наличием гироскопа, реагирующего на повороты тела. Гироскоп состоит из статора (неподвижная часть) и ротора (подвижная часть). В последние годы ведутся синтезы молекулярных моторов и механизмов, в том числе гироскопов, которые позволят намного уменьшить размеры приборов. Так, немецкими химиками синтезирован молекулярный гироскоп **X** (С₇₈Н₈₈О₆), суть действия которого аналогична действию механическому гироскопа:

ЯМР 1 Н спектр исходного вещества содержит синглет (3H), триплет (3H), квадруплет (2H) и группу сигналов ароматических протонов (4H). Вещества $\mathbf{B} - \mathbf{H}$ и \mathbf{X} имеют ось симметрии третьего порядка. Вещество \mathbf{H} быстро обесцвечивает бромную воду и 1% раствор $\mathbf{KMnO_4}$, а вещество \mathbf{X} взаимодействует с этими реагентами медленно.

- 1. Напишите структурные формулы всех изомеров $C_{10}H_{12}O_3$, удовлетворяющих приведенным спектральным данным, которые не содержат связи О–О и имеют одинаковое расположение заместителей в бензольном кольце (не являются между собой *орто-, мета-, пара-* изомерами).
- **2.** Расшифруйте схему синтеза молекулярного гироскопа X, учитывая, что кислотный гидролиз A является обратимым процессом.
- **3.** Какая часть молекулы **X** служит ротором, а какая статором?

РАЗДЕЛ IV. АНАЛИТИЧЕСКАЯ ХИМИЯ

Задача 1

Для определения хлорид-ионов по Фольгарду к подкисленной аликвоте анализируемого раствора ($10.00\,\mathrm{m}$ л) прибавили $20.00\,\mathrm{m}$ л 0.0500M раствора AgNO₃, соль железа(III) в качестве индикатора и, не отделяя осадок, оттитровали смесь 0.0500M раствором KSCN.

1. Запишите уравнения реакций образования осадка и титрования, реакцию индикатора с титрантом и рассчитайте количество хлорида в аликвоте образца, если на титрование затрачено 5.50 мл тиоцианата.

Анализируемый раствор содержит смесь: 0.030М хлорида, 0.040М бромида и 0.050М цианида. Анализ провели несколькими способами: а) обычным титрованием по Фольгарду; b) к раствору добавили избыток КІО₃ в HNО₃ и кипятили с обратным холодильником, пока выделяющиеся пары не перестали окрашивать иодкрахмальную бумагу. Затем добавили фосфористую кислоту H₃PO₃ и повторили отгонку до полного удаления свободного галогена. После охлаждения раствора провели титрование по Фольгарду; c) к раствору добавили разбавленную кислоту и прокипятили раствор, после чего оттитровали его по Фольгарду; d) к раствору добавили избыток щелочи и 30% пероксида водорода и прокипятили, при этом ощущался запах аммиака; раствор подкислили и оттитровали по Фольгарду.

- **2.** Концентрация каких анионов будет определена по каждой из этих методик? Запишите уравнения реакций, используемых для разделения анионов. Какие значения концентраций анионов были получены? Произведения растворимости ($K_S = [Ag^+][Hal^-]$) равны: $AgCl 1.8 \cdot 10^{-10}$; $AgBr 5.3 \cdot 10^{-13}$; $AgCN 1.4 \cdot 10^{-16}$; образование растворимых комплексов серебра не учитывать.
- **3.** В образце могут присутствовать (порознь): Ca^{2+} , Hg^{2+} , MnO_4^- , Fe^{2+} , меркаптаны RSH. Какие из этих веществ будут мешать определению хлорида по Фольгарду? Обоснуйте, записав реакцию для каждого из мешающих веществ.
- **4.** Для получения заметного окрашивания избытка титранта с индикатором (Fe^{3+}) требуется создать равновесную концентрацию тиоцианата не ниже $1 \cdot 10^{-6} M$. Какой объем 0.05M раствора тиоцианата потребовалось ввести после достижения точки эквивалентности при титровании, описанном в п. 1, чтобы наблюдать окрашивание индикатора? Какую погрешность это внесло в определение хлорида? Для AgSCN $K_S = 1.1 \cdot 10^{-12}$.

Задача 2

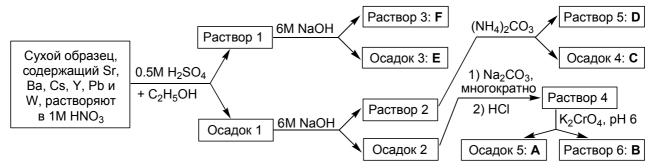
Анионообменную экстракцию применяют для извлечения и концентрирования анионов и анионных комплексов из водной в органическую фазу. Она описывается равновесием:

$$(Kt^{+}B^{-})_{org} + An_{aq}^{-} = (Kt^{+}An^{-})_{org} + B_{aq}^{-}$$
,

где Kt^+ – крупный гидрофобный катион (например, четвертичного аммониевого основания $(C_{10}H_{21})_4N^+$), B^- – противоион, An^- – экстрагируемый анион. В органической фазе свободных ионов нет.

Для определения константы экстракции 0.010М водный раствор HCl (раствор **A**) экстрагировали равным по объему раствором 0.050 моль/л пикрата тетрадециламмония ($C_{10}H_{21}$)₄N⁺Pic⁻ в толуоле (пикриновая кислота – тривиальное название 2,4,6-тринитрофенола). Оптическая плотность A полученного водного раствора при длине волны 410 нм составила 0.400. Оптическая плотность связана с концентрацией соотношением $A = \varepsilon cl$ (закон Бугера-Ламберта-Бэра), где ε – молярный коэффициент поглощения, ε_{410} (Pic) = 9.20·10³ л·моль⁻¹см⁻¹, l – толщина поглощающего слоя, равная 1.00 см.

- **1.** На основании фотометрических данных определите концентрацию пикрат-ионов в водной фазе.
- **2.** Рассчитайте константу экстракционного обмена пикрат-иона на хлорид-ион K_{Pic}^{Cl} , которая соответствует приведенному выше равновесию.


В результате аналогичной экстракции раствора **B**, содержащего $1.00 \cdot 10^{-4}$ моль/л $[AuCl_4]^-$ в 0.0100М HCl, оптическая плотность водной фазы составила 0.915.

- **3.** Рассчитайте константу экстракционного обмена $K_{\text{Pic}}^{\text{AuCl}_{\overline{4}}}$.
- **4.** На основании определенных ранее констант обмена $K_{Pic^-}^{Cl^-}$ и $K_{Pic^-}^{AuCl_4}$ вычислите константу $K_{Cl^-}^{AuCl_4}$ обмена хлорид-иона в $(C_{10}H_{21})_4$ NCl на тетрахлораурат-ион $[AuCl_4]^-$.
- **5.** Рассчитайте минимальный объем 0.050 M толуольного раствора $(C_{10} H_{21})_4 NCl$, в который можно экстрагировать 99.99% золота из 100 мл раствора \mathbf{B} .

Задача З

Топливо ядерного реактора изменяет свой состав за счет реакций деления ядра – расщепления его на два осколка с близкими массами, качественное и количественное определение которых в отработавшем ядерном топливе (ОЯТ) является важной

задачей. Ниже представлена схема разделения содержащихся в ОЯТ изотопов Sr, Ba, Cs, Y, Pb и W методом осаждения:

- **1.** Напишите, каким элементам соответствуют A F.
- 2. Напишите уравнения реакций, описанных в схеме.
- **3.** Другой тип ядерных реакций распад ядра. На схеме приведена цепочка распада в урановом топливе (над стрелками указан период полураспада):

Для каждого этапа цепочки, начиная с образования 240 Pu, укажите тип распада (α -распад, β -распад, (n, γ) реакция).

В заброшенной лаборатории на территории Чернобыльской АЭС обнаружена запаянная в вакууме ампула с биркой « PuO_2 » и лабораторный журнал, последняя запись которого датирована 31 марта 1986 г.: «Из образца ОЯТ экстрагировали смесь изотопов 239 Pu, 240 Pu и 241 Pu, после чего спектрометрически установили общую массу Pu в экстракте ($m_1 = 3.0000$ г). Затем количественно осадили Pu(IV) купфероном (аммониевая соль N-нитрозо-N-фенилгидроксиламина), осадок отфильтровали и прокалили до образования оксида Pu(IV). Его масса m_2 составила 3.4010 г.» Чтобы определить изотопный состав, оксид плутония из ампулы был вновь взвешен 1 апреля 2011 г. Его масса m_3 составила 3.4008 г.

- 4. Изобразите структурную формулу купфероната плутония.
- **5.** Определите изотопный состав (масс. %) Ри в образце в 1986 г., считая, что после экстракции в исследуемом образце не протекают реакции образования и поглощения нейтронов. В смеси изотопов, выделенной из ОЯТ, массовые проценты 241 Ри и 240 Ри (x и y, соответственно) связаны эмпирическим соотношением $x = 0.0168y^2$. Для расчета накопления промежуточного продукта 241 Ат используйте формулу:

 $N(^{241}Am) = N_0(^{241}Pu) \frac{\lambda_{Pu}}{\lambda_{Am} - \lambda_{Pu}} (e^{-\lambda_{Pu}t} - e^{-\lambda_{Am}t}),$ где λ – константа радиоактивного распада, связанная с периодом полураспада соотношением: $\lambda T_{1/2} = \ln 2$.

РАЗДЕЛ V. НЕОРГАНИЧЕСКАЯ ХИМИЯ

Задача 1

Первым синтезированным в 1823 г. комплексом металла **Ме** с лигандом NH_3 была соль **A**, перспективная для создания полупроводниковых устройств. Для получения **A** 3.90 г порошка металла **Ме** нагревали в токе Cl_2 при 520°C до получения 4.79 г **Me** Cl_n (выход 90%), который затем растворили в HCl с образованием красного раствора кислоты **B**. После нейтрализации последнего избытком 0.1M (NH_4)₂ CO_3 выпал зеленый осадок **A** и образовался раствор желтого неэлектролита **C**. При нагревании **C** до 275°C или **A** до 290°C образуется желто-зеленый неэлектролит **D**.

Вещ-во	W, масс. %		Межатомные расстояния, Å в кристалле		
	Me	N	Me-Cl	Me-N	Me-Me
A	65.0	9.33	2.33	2.00	3.24
C	65.0	9.33	2.25	2.07	3.67
D	65.0	9.33	2.32	1.98	3.68

В растворах, содержащих по \mathbf{m} г \mathbf{A} , \mathbf{C} или \mathbf{D} в 1000 г $\mathbf{H}_2\mathbf{O}$ степень диссоциации бинарного \mathbf{A} электролита \mathbf{A} $\alpha = 90\%$, а

понижение температуры кристаллизации растворов $\Delta t_{C} = \Delta t_{D}$ и $\Delta t_{A} = 0.9 \Delta t_{C}$.

В 1969 г. Б. Розенберг показал, что **С**, теряя лиганды Cl⁻, образует связи с N-7 двух остатков гуанина в ДНК, ингибируя рост раковых клеток.

- **1.** Расшифруйте **Me**, **Me**Cl_n, **A**, **B**, **C** и **D**. Учтите, что координационное число **Me** 4, а катион в **A** и анионы в **A** и **B** имеют форму правильного многоугольника.
- **2.** Изобразите структурные формулы C, D, катиона в A и анионов в A и B (метод BC).
- **3.** Изобразите структурную формулу комплекса, ингибирующего рост раковых клеток, используя фрагмент ДНК в листе ответа.
- 4. Напишите уравнения реакций (в растворе ионные).
- **5.** Вычислив K, установите основное, из трех возможных, равновесие в растворе $(NH_4)_2CO_3$. Считая равновесие единственным, выведите формулу для расчета и вычислите pH раствора (для H_2CO_3 $K_1 = 4.3 \cdot 10^{-7}$; $K_2 = 4.7 \cdot 10^{-11}$, а для $NH_3 \cdot H_2O$ $K_b = 1.8 \cdot 10^{-5}$).
- **6.** В квазиодномерной структуре твердых **A**, **C** и **D** комплексы расположены друг над другом, образуя линейную цепь атомов **Me**. Объясните причину, по которой только **A** можно использовать для создания полупроводниковых устройств.
- 7. Обоснуйте зеленую окраску **A** при сочетании бесцветного катиона и красного аниона, учитывая что параметр расщепления $\Delta = hc / \lambda$.

Задача 2

Для соединения металла \mathbf{Y} и неметалла \mathbf{X} характерно изменение окраски при нагревании (термохромизм). В боксе помещают в ступку серые металл (1.985 г) и неметалл (2.512 г), добавляют 5 мл C_2H_5OH или CCl_4 с образованием коричневой или фиолетовой суспензии. Последнюю перетирают до удаления растворителя и образования 4.497 г красного вещества \mathbf{D} , которое растворяют в растворе соли калия $K\mathbf{X}$ (3.286 г в 33.00 мл H_2O). К образовавшемуся бесцветному раствору вещества \mathbf{B} добавляют 4.942 г $CuSO_4 \cdot 5H_2O$ в 20 мл H_2O и пропускают SO_2 до образования красного осадка $\mathbf{A}(\kappa)$, меняющего при 67°C цвет на коричневый $\mathbf{A}(\kappa op)$. В структуре $\mathbf{A}(\kappa)$ анионы находятся в вершинах куба, а катионы в центре четырех граней, а в $\mathbf{A}(\kappa op)$ часть металлов катиона и аниона обмениваются местами.

- 1. Расшифруйте вещества и напишите уравнения реакций.
- **2.** Оцените температуру термохромного перехода вещества **D** (красное \rightarrow желтое), если $\Delta_{f}H^{0}(\mathbf{D}(\kappa)) = 105.4 \ \kappa Дж/моль;$ $S^{0}(\mathbf{D}(\kappa)) = 184.0 \ Дж/моль \cdot K;$ $\Delta_{f}H^{0}(\mathbf{D}(\kappa)) = 102.7 \ \kappa Дж/моль;$ $S^{0}(\mathbf{D}(\kappa)) = 177.3 \ Дж/моль \cdot K.$
- **3.** В листе ответов выберите диаграмму, описывающую фрагмент строения $\mathbf{D}(\kappa)$ и $\mathbf{D}(\kappa)$, если в $\mathbf{D}(\kappa)$ длина четырех связей \mathbf{Y} – \mathbf{X} 2.78 Å, а в $\mathbf{D}(\kappa)$ 2.62 Å (2 связи) и 3.51 Å (4 связи).
- **4.** Опишите строение аниона соединений **B** и **A**(к) (метод BC). Укажите причину термохромизма **A**(к) \rightarrow **A**(кор).

Задача З

Как известно, пероксид водорода — реакционноспособное соединение, которое может являться как окислителем, так и восстановителем, а также выступать в качестве лиганда в комплексных соединениях.

1. КМпО₄ количественно взаимодействует с подкисленным H₂SO₄ водным раствором пероксида водорода, при этом происходит обесцвечивание раствора перманганата.

Напишите уравнение вышеописанной реакции.

2. В присутствии $(NH_4)_6Mo_7O_{24}$ эта реакция протекает с образованием гетерополисоединения марганца (+4) **D**, которое при охлаждении осаждается в виде оранжевых кристаллов, содержащих 3.57% Mn и 56.13% Mo по массе. При термолизе **D**

образуется смесь двух газов, относительная плотность которой по ацетилену равна 2/3. При термолизе изменение степеней окисления элементов не происходит.

Напишите уравнения реакций образования **D** и его термолиза.

3. При взаимодействии $K_2Cr_2O_7$ с подкисленным H_2SO_4 водным раствором пероксида водорода появляется интенсивное синее окрашивание, обусловленное присутствием нестабильного соединения H_2CrO_6 , в ¹Н ЯМР спектре которого отсутствуют сигналы от одиночных протонов при 10–11 м.д. Повысить его устойчивость можно добавлением пиридина, с которым образуется аддукт $CrNC_5H_5O_5$.

Напишите уравнение реакции получения H_2CrO_6 и изобразите структурные формулы H_2CrO_6 и $CrNC_5H_5O_5$.

4. Нейтрализацией H_2CrO_6 спиртовым раствором КОН при сильном охлаждении синтезируют фиолетовую взрывчатую соль **A**, которая содержит по массе 27.6% Cr, 20.8% K, а также кислород и водород.

Определите формулу соли ${\bf A}$ и напишите уравнение реакции ее синтеза. Изобразите структурную формулу аниона соли ${\bf A}$.

5. Если реакцию взаимодействия соли калия и хрома (+6) с H_2O_2 проводить при охлаждении в конц. КОН, то выпадают красные кристаллы соли **B**, которая, по данным элементного анализа, содержит по массе 17.5% Cr, 39.5% K и кислород.

Определите формулу ${\bf B}$ и напишите уравнение реакции ее синтеза. Изобразите структурную формулу её аниона.

6. Водный раствор **В** разлагается с выделением одного и того же газа и в сильнокислой, и в сильнощелочной среде. При разложении **В** в щелочной среде объем выделяющегося газа на 30% меньше, чем в кислой.

Установите, о каком газе идет речь? Напишите уравнения реакций разложения водного раствора соли **В** в кислой и в щелочной средах.