Задача 1 (автор Кулаго А.)

1. Для двухкомпонентной смеси, содержащей сопряженные формы кислоты и основания, оптическая плотность равна:

$$A = \epsilon_{\text{HIn}} l c^{0} \alpha_{\text{HIn}} + \epsilon_{\text{In}^{-}} l c^{0} \alpha_{\text{In}^{-}}$$

(1)

Из выражения для константы равновесия $K_{HIn} = \frac{H^+ \ln^-}{[HIn]}$ и уравнения материального баланса $c^0 = [HIn] + [In^-]$ выразим мольные доли компонентов:

$$\alpha_{HIn} = \frac{\left[H^{+}\right]}{\left(\left[H^{+}\right] + K_{HIn}\right)} ;$$

(2)

$$\alpha_{\text{In}^{-}} = \frac{K_{\text{HIn}}}{\left(\left[H^{+} \right] + K_{\text{HIn}} \right)} \quad .$$

(3)

Очевидно, что в сильнокислой среде будет присутствовать только форма HIn и оптическая плотность раствора будет равна:

$$A_{HIn} = \epsilon_{HIn} l c_{Hin}^{0} .$$

(4)

В сильнощелочной среде будет присутствовать только форма In⁻ и оптическая плотность раствора будет равна:

$$A_{_{In^{^{-}}}}=\epsilon_{_{In^{^{-}}}}lc_{_{In^{^{-}}}}^{^{0}}\,.$$

(5)

Теперь, подставляя (2)–(5) в (1), получаем выражение для оптической плотности раствора, содержащего HIn и In^- :

$$A = \left\{ \frac{\left(A_{HIn} \left[H^{+}\right]\right)}{\left(\left[H^{+}\right] + K_{HIn}\right)} + \frac{\left(A_{In^{-}} K_{HIn}\right)}{\left(\left[H^{+}\right] + K_{HIn}\right)} \right\}$$

(6)

Выразив K_{HIn} из (6), приходим к окончательной формуле.

$$K_{HIn} = \left(\frac{A_{HIn} - A}{A - A_{In^{-}}}\right) \left[H^{+}\right] = \left(\frac{A_{HIn} - A}{A - A_{In^{-}}}\right) 10^{-pH}$$

(7)

Решая (7), находим три экспериментальных значения, в ответе указываем среднее:

pН	1.09	2.89	3.38	3.86	12.77
pK_{HIn}	_	3.37	3.35	3.39	_

 $pK_{HIn} = 3.37$ (2 балла за расчет + 1 балл за правильный численный ответ, всего 3 балла).

2. Из (4) находим
$$\varepsilon_{\text{HIn}}$$
:
$$\varepsilon_{HIn} = \frac{A_{HIn}}{lc_{Hin}^0} = \frac{0.683}{1.25 \times 1.80 \times 10^{-5}} = 3.0 \times 10^4 \, (\text{л·моль}^{-1} \cdot \text{см}^{-1}).$$

Из (5) находим
$$\varepsilon_{\text{In}}^-$$
: $\varepsilon_{\text{In}}^- = \frac{A_{\text{In}}^-}{lc_{\text{In}}^0} = \frac{0.318}{1.25 \times 1.80 \times 10^{-5}} = 1.4 \times 10^4 \, (\text{л·моль}^{-1} \cdot \text{см}^{-1}).$

 $(1\ балл\ за\ расчет\ +\ 0.5\ балла\ за\ каждый\ правильный\ численный\ ответ, всего\ 2\ балла).$

3.
$$pH = pK_{HIn} - lg \frac{[HIn]}{[In^{-}]}$$
(8)

Интервал перехода окраски: $\left(pK_{HIn} - \lg\frac{10}{1}\right) \langle pH \langle \left(pK_{HIn} + \lg\frac{10}{1}\right),$ подставляя найденное значение $pK_{HIn} = 3.37$, получаем ответ: 2.37 < pH < 4.37.

- (2 балла за расчет + 1 балл за правильный численный ответ, всего 3 балла)
- 4. При $\lambda_{\rm rp}$: $A_{\rm HIn} = A_{\rm In}$ при [HIn] = [In] (из спектра) и соответственно $\epsilon_{\rm HIn} = \epsilon_{\rm In} = \epsilon_{\rm In}$ = $\epsilon_{\rm rot}$ тогда $C_{\rm x} = \frac{A}{1\varepsilon} = \frac{2.213}{2.08 \times 2.2 \times 10^4} = 4.84 \times 10^{-5} ({\rm моль \, m}^{-1}).$

(1 балл за расчет + 1 балл за правильный численный ответ, всего 2 балла)