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On the topology of layered motifs (H2O)N
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On the basis of Infantes–Motherwell classification of water clusters

in organic hydrates combined with the theory of planigons, feasible

topologies of water layers were derived. A value of the protic excess

for water motifs was introduced. Its dependence on the nature of an

organic molecule, and its impact on the topology of a water layer,

were analyzed.
1. Introduction

Infantes and Motherwell1 introduced a convenient symbolism

intended for finite and infinite water clusters that were realized in

organic hydrates: discrete chains (D), continuous chains (C), rings

(R), tapes (T) and layers (L). On the basis of data retrieved from the

CSD2 they analyzed the abundance of respective graphs over pure

water motifs1 and motifs extended by hydrogen bond donors and

acceptors of an organic molecule.3 Afterwards, a search for the

conditions of formation of a hydrate was performed and the distri-

bution of water molecules by types of coordination was presented.4

Amongst various water clusters layered water motifs

Lm1(n1)m2(n2).mk(nk), composed of m1-, m2-, ., mk-membered

rings, which share nodes (oxygen atoms) with n1, n2, ., nk adjacent

cycles1 present a particular interest in our opinion. Firstly, some of

these layers can be unalterably transported into a 3D framework, e.g.

layer L5(7), which occurs in hexahydrates of pinacol (CSD refcode

PINOLH) and piperazine (PIPERH), can also be visualized in the

structure of water ice XII.5 Secondly, water networks can not only be

formed on a relatively flat surface, but also on other 2D surfaces.

Platonic and Archemedean solids that are in fact cells of hydrate

clathrates, are formed on spherical surfaces. For instance, layer L5(7)

is made up of dodecahedron patches. On a cylindrical surface tubes

are formed, e.g. the structure of 18-crown-6$CH3NH3F$6H2O

(LUQJEM6) which contains water nanotubes of the topology L6(6),

identical with those of carbon (single-wall graphene nanotubes). The

most important challenge is to derive feasible motifs on arbitrary 2D

manifolds.

The current communication represents a deductive derivation

(topological analysis) of feasible water layers Lm1(n1)m2(n2).mk(nk)

according to the stoichiometry of a hydrate.

2. Regular partitions of a flat surface

There are merely 11 regular partitions of a flat surface into equal

polygons (planigons), called Laves nets.7 Yet only four of them

(Fig. 1) account for water layers, since the others have nodes with

a degree more than 4, while H2O, strictly speaking, is capable of
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forming no more than 4 hydrogen bonds within a cluster (H2O)m.

Two nets correspond to symbol L5(7), one to symbol L6(6) and

one to L4(8). Any other symbol Lm(n) does not fit a (H2O)N layer.

Symbols Lm1(n1)m2(n2).mk(nk) with k > 1 behave in a different

way. Apparently, as any of respective motifs is periodic, it can be

mapped as a certain regular net with equal cells divided into k

polygons. In particular, the most widespread in organic hydrates

layer L4(6)5(7)6(8) can be transposed into its topologic equivalent,

shown in Fig. 2(a), with a hexagonal fundamental region. Taking into

consideration that in this layer one 4-membered ring is accompanied

by one 6-membered and two 5-membered rings, a symbol repro-

ducing the stoichiometry would be L4(6)5(7)5(7)6(8). Naturally, there

are other topologically non-equivalent nets L4(6)5(7)5(7)6(8)

(Fig. 2(b)), as well as truly L4(6)5(7)6(8) (Fig. 2(c)), though none of

them have been found in a crystal structure of a hydrate so far.

For the regular nets composed of equal t-sided polygons the

following equation from a well-known Euler formula (eqn (1)) was

derived:7

F � F,
t

2
þ F,

�
1

a1

þ 1

a2

þ :::þ 1

at

�
¼ bðFÞ (1)

where F is the number of t-sided polygons within a certain simply

connected domain, t/2 is the number of ribs per one polygon, ai is the

degree of node i (i ¼ 1, ., t), and b(F)� F. This equation follows

from the fact that the ratio of a number of polygons adjacent to

a simply connected domain to the number of its interior polygons (F)
Fig. 1 Laves nets applicable for description of layered motifs (H2O)N.
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Fig. 3 Distribution of 158 trihydrates, 90 tetrahydrates, and 33 hexa-

hydrates (only organic; with 3D-coordinates determined; number of

residues¼ 2; Z0 ¼ 1) retrieved from the CSD.2 The construction of motifs

(H2O)m was performed using the Mercury program8 for bonds H2O/
OH2 not longer than 3.04 �A (in accordance with van der Waals radii

proposed by Bondi9).Dimers D2 with protons ordered (a) and disordered

by means of an inversion centre (b).

Fig. 2 Instances of topologically non-equivalent layers

L4(6)5(7)5(7)6(8) (a, b) and L4(6)5(7)6(8) (c). Laves planigons are

marked in red.
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decreases with increase of F. There are E¼ F$t/2 edges, V¼ F$(1/a1

+ 1/a2 + . + 1/at) vertices, and F faces per a domain, with (V� E +

F) being as many times smaller than F as needed.

We have modified this formula (eqn (2)) for nets (H2O)N con-

taining merely tri- and tetra-coordinated nodes. Taking into

consideration that each polygon mi(ni) consists of (ni � mi) tetra-

and (2mi � ni) tri-coordinated nodes, we obtain:

F,k � F,

Pk
i¼1

mi

2
þ F,

0
BB@
Pk
i¼1

ni �
Pk
i¼1

mi

4
þ

2
Pk
i¼1

mi �
Pk
i¼1

ni

3

1
CCA ¼ bðFÞ

(2)

Designating
Pk
i¼1

mihM;
Pk
i¼1

nihN we obtain, that in the limit

F / N

M + N ¼ 12k (3)

at that M # N. If k ¼ 1, four nets formally satisfy eqn (3): L6(6),

L5(7), L4(8) and L3(9), the latter not existing, since a triangle has 6

adjacent polygons at most.

It is not difficult to show that the layer L4(6)5(7)6(8) also satisfies

eqn (3), if k ¼ 3.
Fig. 4 Dimers D2 with protons ordered (a) and disordered by means of

an inversion centre (b).
3. Protic excess

The protic excess of water motif (H2O)m is the average number of

hydrogen atoms per molecule H2O, which do not belong to the ribs

of the Om graph, designated as p. Evidently, 0 # p # 2; p > 1 for

discrete chains (D), p ¼ 1 for continuous chains (C), for tapes

generally 1/2 < p < 1. Since a tri-coordinated atom O possesses, on

average, 1/2 an excess of protons, and a tetra-coordinated atom O has

no excess protons, each layer L containing merely tri- and tetra-

coordinated nodes has p # 1/2.

Let the stoichiometry of a hydrate be Y$nH2O, where Y is the

organic component. Then p$n$Z0 is the number of excess protons,

and (2 � p)$n$Z0 is the number of binding protons, per asymmetric

unit. If O atoms do not occupy specific positions (site symmetry

higher than 1) and are not disordered, then p$n$Z0 and (2� p)$n$Z0

are both integers or non-integers. Excess protons can not occupy

specific positions, otherwise the adjacent O would occupy the same

position (generally a rotational axis), therefore when p$n$Z0 is a non-

integer, some excess protons are disordered. On the contrary, binding

protons can not be disordered, otherwise adjacent atoms O would be

also disordered. Consequently, when (2 � p)$n$Z0 is a non-integer,

some binding protons occupy specific positions. In Fig. 3 water

dimers D2 are shown, in which the only binding proton is located in
This journal is ª The Royal Society of Chemistry 2010
the common position (Fig. 3(a)) and in the inversion centre

(Fig. 3(b)). The latter case implies excess protons being disordered.

For structures with no disorder p$n$Z0 is mostly integer. When

Z0 ¼ 1, p$n becomes an integer. In many cases this value equals the

number of H-acceptors of an organic molecule H-bound with the

motif (H2O)m. As it was shown previously,4 just about 15% of

hydrate water molecules do not saturate donor H-bonds. Our results

show unequal distribution over dimensionalities of (H2O)m motif

(Fig. 4). Low values of p$n, in general, accounting for layers and for

the majority of tapes, entail practically complete saturation of excess

protons, whereas higher values of p$n entail less saturation.

If water motif is a layer containing merely tri- and tetra-coordi-

nated atoms O, then:

x$n ¼ 2j, j ˛ N (4)

where x ¼ 2p denotes fraction of tri-coordinated nodes. One may

utilize eqn (4) in order to derive the most popular layers (H2O)N in

hydrates of different n. In monohydrates (n¼ 1) water layers can not

occur, because x < 1. In dihydrates there can be merely a layer, in

which every node is tri-coordinated, i.e. L6(6). In trihydrates, there

can be a layer with x¼ 2/3, in tetrahydrates a layer with x¼ 1/4 and

L6(6), etc.

Let us express the protic excess of a layer via topologic charac-

teristics M and N. For that we should count the number of binding

protons per a simply connected domain of cycles mi(ni), i ¼ 1, ., k,

by dividing the number of its ribs by the number of its nodes (eqn (5)):
CrystEngComm, 2010, 12, 1054–1056 | 1055
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2� p ¼ M=2

ðN �MÞ=4þ ð2M �NÞ=3
(5)

It follows that:

M

N
¼ 2� p

4� 5p
(6)

and, taking into account eqn (3),

p ¼ 1� 2k

M � 2k
(7)

Dividing the arisen ratio by k, and designating M/k ¼ �mi (the

mean size of cycles mi), we obtain:

p ¼ 1� 2

�mi � 2
(8)

Eqn (7) and eqn (8) may be utilized to predict water layers in

hydrates Y$nH2O with different n. For instance, in trihydrates, as it

was shown above, p¼ 1/3, therefore M¼ 5k. Layers L5(7), L4(6)6(8)

and L4(6)5(7)6(8) satisfy this criterion, and, taking into account that

H2O tends to form 4-, 5- and 6-membered rings, the mentioned layers

are likely to be merely plausible, when k # 3. By means of the reverse

speculation one may find that the mentioned layers are to be realized

in hydrates with n divisible by 3.

For layers Lm1(n1)m2(n2).mk(nk) containing not only tri- and

tetra-coordinated nodes, but bi-coordinated nodes, too, it is not

complicated to prove the validity of the following equations:

M + N � Y ¼ 12k (30)

M

N � Y
¼ 2� p

4� 5p
(60)

where Y ¼
Pk
i¼1

yi

and yi is the number of bi-coordinated nodes in cycle mi(ni).

However, the form of eqn (7) should not be revised.
1056 | CrystEngComm, 2010, 12, 1054–1056
4. Conclusion

It was shown that integer-valued number of protons not belonging to

a graph ON (excess protons), per asymmetric unit, facilitates the

prediction of plausible symbols Lm1(n1)m2(n2).mk(nk). For layered

hydrates Y$nH2O this value, as a rule, equals the number of

H-acceptors of Y bound with water molecules. Thus, the topology of

water layer is implicitly defined by the nature of organic compound.

The values

Pk
i¼1

mi;

�Pk
i¼1

ni �
Pk
i¼1

yi

�

where yi is the number of bi-coordinated nodes in cycle mi(ni), and k,

are interrelated. Hence, the protic excess corresponds to the mean size

of cycles �mi.
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