УДК 541.128.3

Окислительная димеризация метана: кинетика, математическое моделирование и оптимизация процесса на La/Ce катализаторах

В. А. Махлин, М. В. Подлесная, А. Г. Дедов, А. С. Локтев, Н. О. Тельпуховская, И. И. Моисеев

ВЛАДИЛЕН АБРАМОВИЧ МАХЛИН — кандидат технических наук, старший научный сотрудник, заведующий лабораторией промышленного катализа ФГУП «НИФХИ им. Л.Я. Карпова». Область научных интересов: гетерогенный катализ, математическое моделирование, аппаратурно-технологическое оформление процессов. E-mail makhlin@bk.ru

МАРИЯ ВЛАДИМИРОВАНА ПОДЛЕСНАЯ — младший научный сотрудник ФГУП «НИФХИ им. Л.Я. Карпова». Область научных интересов: математическое моделирование, аппаратурнотехнологическое оформление каталитических процессов. E-mail podlesnaya@bk.ru

АЛЕКСЕЙ ГЕОРГИЕВИЧ ДЕДОВ — доктор химических наук, член-корреспондент РАН, профессор, заведующий кафедрой общей и неорганической химии Российского государственного университета нефти и газа им. И.М. Губкина (ОНХ РГУ нефти и газа им. И.М. Губкина). Область научных интересов: катализ, аналитическая химия, экология. E-mail genchem@gubkin.ru

АЛЕКСЕЙ СЕРГЕЕВИЧ ЛОКТЕВ — доктор химических наук, профессор кафедры ОНХ РГУ нефти и газа им. И.М. Губкина. Область научных интересов: катализ, превращение легких алканов. E-mail al57@rambler.ru

НАТАЛЬЯ ОЛЕГОВНА ТЕЛЬПУХОВСКАЯ — аспирантка кафедры ОНХ РГУ нефти и газа им. И.М. Губкина. Область научных интересов: катализ, превращения легких алканов. E-mail genchem@gubkin.ru

ИЛЬЯ ИОСИФОВИЧ МОИСЕЕВ — доктор химических наук, академик, профессор кафедры ОНХ РГУ нефти и газа им. И.М. Губкина. Область научных интересов: химия благородных металлов, нефтехимия, катализ в органическом синтезе, гомогенный катализ, химия кластеров и кластерный катализ, промышленное использование катализа. E-mail ilya.moiseev@mail.ru

105064 Москва, ул. Воронцово поле, 10, НИФХИ им. Л.Я. Карпова.

117917 Москва, Ленинский просп., 65, РГУ нефти и газа им. И.М. Губкина.

В условиях сокращения мировых запасов нефти природный газ привлекает все большее внимание как альтернативный источник сырья для нефтехимических производств. Традиционные методы переработки метана в жидкие углеводороды осуществляются через сложные многостадийные процессы, протекающие при высоких давлениях и температурах. Реализация таких процессов сопряжена с большими капиталовложениями.

Более рациональными представляются одностадийные методы переработки метана в этилен, в частности, метод окислительной димеризации метана, осуществляемый при давлении, близком к атмосферному [1, 2].

Реакция окислительной димеризации метана

Прежде всего, отметим большой интерес исследователей к процессу окислительной димеризации метана, о чем свидетельствует огромное количество публикаций [см., например, 1, 3—10]. В одной из ранних работ [11] описано получение этана и этилена из метана при поочередном напуске метана и воздуха на оксиды металлов переменной валентности, нанесенные на Al_2O_3 в количестве 5—10%. Катализаторы MnO/Al_2O_3 и CdO/Al_2O_3 при температуре 800 °C обеспечивали 10—11%-ную конверсию метана при селективности 40—45%. Аналогичные процессы разрабатывались фирмами «Atlantic Richfield Co.» [13, 14] и «Union Carbide» [16]. Катализаторами служили оксиды, способные аккумулировать кислород, например, оксиды празеодима [16, 17], тербия [18] и церия [19].

Возможность проведения реакции окислительной димеризации метана в непрерывном режиме впервые была реализована с использованием катализаторов 34% PbO/Al₂O₃ [20], 3—7%Li₂O/MgO [21], оксидов РЗЭ [22]. Сравнительно высокий выход C₂-утлеводородов — 19,6% при селективности 50,3% был достигнут на катализаторе Li₂O/MgO [21], а наибольшая селективность

92,8—98,5% получена на катализаторе Sm_2O_3 при 700 °C, конверсия метана составила 1—5% [22].

Можно выделить три основные группы наиболее активных катализаторов окислительной димеризации метана:

— оксиды *d*- и некоторых *p*-элементов-металлов с переменной степенью окисления, например, марганца и свинца;

— оксиды щелочных и щелочноземельных металлов;

— оксиды редкоземельных элементов.

Эффективны также комбинации этих катализаторов, в том числе на носителях различной природы. Так, например, выход продуктов окислительной димеризации метана 25,8% был достигнут на катализаторе SrO/La₂O₃ при 800—850 °C (селективность 85,6%) [24] и 19% на катализаторе 50% SrF₂/Sm₂O₃ при 800 °C (конверсия метана 34%) [25]. На гидроксилапатите максимальный выход углеводородов C₂ (этилен, этан) при 750 °C составил 22% [24].

Предложены активные катализаторы на основе сверхкислот WO_3/ZrO_2 в качестве носителей [26]. Методом пропитки на них наносили Еи или Се вместе с Li₂CO₃ либо Се или Мп совместно с NaCl. Выход C₂-углеводородов на катализаторах первого типа составил 18%. Катализатор устойчиво работает более 100 ч. Катализаторы второго типа обеспечивают больший выход продуктов, но они быстро дезактивируются.

В РГУ нефти и газа им. И.М. Губкина совместно с НИФХИ им. Л.Я. Карпова и ИОНХ РАН им. Н.С. Курнакова в течение ряда лет проводятся исследования процесса окислительной димеризации метана с использованием катализаторов на основе оксидов редкоземельных металлов, синтезированных в том числе из промышленно выпускаемых нитратных растворов РЗЭ [2, 27—31]. Показано, что при сочетании каталитически более активного в процессе димеризации метана оксида лантана и менее активного оксида церия достигается синергический эффект в отношении выхода продуктов C_{2+} (этилен, этан, пропилен, пропан). Показано также, что катализатор, содержащий смесь оксидов La и Ce (9:1 мол.), нанесенную на плавленый MgO (периклаз), может эффективно функционировать более 100 ч.

Накопленные к настоящему времени данные позволяют оптимистично оценивать перспективы практической реализации процесса получения этилена окислительной димеризацией метана. Однако для определения оптимального режима и разработки аппаратурного оформления процесса необходимо знание о кинетических закономерностях этой реакции.

Кинетическая модель окислительной димеризации метана

Методика эксперимента

Кинетические исследования проводили на лабораторной установке с реактором проточного типа. Реактор представляет собой кварцевую трубку (длина 650 мм, внутренний диаметр 8 мм), снабженную подвижной термопарой для измерения продольного профиля температур. Слой катализатора La-Ce/MgO (крупность частиц 0,25—0,50 мм, навеска 0,1—0,5 г) помещали в зону температурного плато реактора. На входе в реактор, а также перед слоем катализатора и после него укладывали слой кварцевой ваты, обеспечивающий гашение свободных радикалов. Такая конструкция реактора позволяет свести к минимуму вклад газофазных реакций. В качестве исходного сырья использовали смешиваемые в потоке кислород (чистота 99,999 %об.) и метан (чистота 99,99 %об., поставщик — ОАО «Московский газоперерабатывающий завод»).

Условия проведения процесса: атмосферное давление, температура в пределах 700—860 °С, объемное соотношение метан: кислород в пределах 2—7, скорость подачи газовой смеси 1—15 л/ч. Продукты реакций идентифицировали методом хромато-масс-спектрометрии (хромато-масс-спектрометр Automass-150 фирмы «Delsi-Nermag», Франция). Количественный анализ осуществляли методом газо-жидкостной хроматографии. Разделение компонентов проводили на трех колонках (длина 2 м), заполненных соответственно порапаком-Q, цеолитом NaX или алюмогелем, модифицированным карбонатом натрия. Детектор — катарометр, газ-носитель — гелий. Полученные результаты представлены в табл. 1

Построение кинетической модели процесса

Анализ данных табл. 1 показывает, что в условиях эксперимента конверсия реагентов и селективность по C_{2+} изменяются в широких пределах: метана — от 1 до 35%, кислорода — от 4 до 98%, селективность — от 30 до 70 %. Для описания полученных данных была предложена следующая система стехиометрических уравнений:

$$4CH_4 + O_2 \rightarrow 2C_2H_6 + 2H_2O \tag{1}$$

$$2C_2H_6 + O_2 \rightarrow 2C_2H_4 + 2H_2O$$
 (2)

$$2CH_4 + O_2 \rightarrow C_2H_4 + 2H_2O \tag{3}$$

$$C_2H_4 + 2O_2 \rightarrow 2CO + 2H_2O \tag{4}$$

$$C_2H_4 + 3O_2 \rightarrow 2CO_2 + 2H_2O \tag{5}$$

$$CH_4 + 2O_2 \rightarrow CO_2 + 2H_2O \tag{6}$$

 $CO_2 + H_2 \iff CO + H_2O$ (7)

В соответствии с этой схемой кинетическая модель процесса, осуществляемого в проточном реакторе, представляет собой систему дифференциальных уравнений, описывающих скорости расходования реагентов и образования продуктов в реакциях (1—7):

$$\frac{dy_{\rm CH_4}}{d\tau} = -4k_1 \cdot p \cdot C_{\rm O_2} - 2 k_3 \cdot p \cdot C_{\rm O_2} - k_6 \cdot p \cdot C_{\rm O_2}$$
$$\frac{dy_{\rm O_2}}{d\tau} = -k_1 \cdot p \cdot C_{\rm O_2} - k_2 \cdot p^2 \cdot C_{\rm O_2} \cdot C_{\rm C_2H_6} - k_3 \cdot p \cdot C_{\rm O_2} - 2k_4 \cdot p^2 \cdot C_{\rm O_2} \cdot C_{\rm C_2H_4} - 3k_5 \cdot p^2 \cdot C_{\rm O_2} \cdot C_{\rm C_2H_4} - 2k_6 \cdot p \cdot C_{\rm O_2}$$

$$\frac{dy_{C_2H_4}}{d\tau} = 2k_2 \cdot p^2 \cdot C_{O_2} \cdot C_{C_2H_6} + k_3 \cdot p \cdot C_{O_2} - k_4 \cdot p^2 \cdot C_{O_2} \cdot C_{C_2H_4} - k_5 \cdot p^2 \cdot C_{O_2} \cdot C_{C_2H_4}$$

Таблица 1

Результаты кинетических исследований процесса окислительной димеризации мета	на
--	----

0		± °C	Подано, мл/ч		Получено, мл/ч										
OHET CH_4/O_2	<i>I</i> , 'C -	CH ₄	O_2	N_2	CH ₄	C_2H_4	C_2H_6	N_2	C_3H_6	C_3H_8	CO_2	СО	O_2	H_2	
1	3,6	716	13577	3771	43	13352	4	33	43	0	0	91	60	3641	139
2	3,6	790	13427	3730	42	12716	24	148	42	0	4	237	118	3168	216
3	5,3	790	13244	2499	46	12689	19	136	46	0	4	158	75	2115	163
4	3,4	800	8242	2424	43	7562	36	117	43	2	2	243	119	2095	178
5	3,4	838	10107	2973	55	8673	154	227	55	8	10	433	185	1845	68
6	3,4	855	9153	2692	50	7700	181	213	50	14	9	406	190	1535	170
7	2,9	806	2325	802	47	1992	33	30	47	2	1	123	75	423	74
8	2,9	810	2299	793	48	1990	29	28	48	2	1	115	71	451	71
9	2,9	818	2328	803	50	1947	43	30	50	3	1	135	88	370	75
10	3	830	2335	778	42	1868	71	29	42	4	1	171	81	269	78
11	3	840	2310	770	49	1822	71	28	49	4	1	165	110	219	86
12	3	844	2349	783	49	1830	81	28	49	4	1	171	115	178	90
13	3,8	829	2379	626	53	1987	59	31	53	3	1	113	87	220	76
14	3,8	833	2377	626	52	1968	64	31	52	3	1	118	89	213	77
15	3,8	837	2367	623	52	1958	66	31	52	3	1	113	90	203	77
16	3,8	841	2440	642	53	2010	71	31	53	3	1	119	95	193	80
17	1,9	855	1951	1027	128	1343	81	39	128	5	1	294	56	29	58
18	2,1	849	2008	956	118	1400	86	31	118	4	1	312	47	29	58
19	2,9	786	1995	688	77	1519	41	44	77	2	3	241	50	83	72
20	2,9	807	2091	721	73	1561	59	51	73	3	2	270	25	19	65
21	2,9	824	2029	700	168	1521	61	39	168	3	2	253	40	39	59
22	3,6	740	1238	344	44	1163	4	10	44	0	0	36	11	274	26
23	3,6	761	1256	349	50	1172	5	11	50	0	0	38	14	286	27
24	3,4	794	1109	326	75	1002	12	11	75	1	0	46	12	259	27
25	3,4	797	1162	342	55	1030	16	11	55	1	0	52	23	163	29
26	4,4	798	2009	457	49	1824	21	23	49	2	1	65	23	273	42
27	4,4	845	1957	445	48	1699	46	21	48	2	0	86	32	144	49
28	6,9	798	3821	554	46	3632	15	51	46	0	0	46	11	408	45
29	6,9	784	3776	547	44	3673	4	27	44	0	0	33	8	433	39
30	6,9	820	3817	553	47	3592	25	48	47	1	1	59	14	338	49
31	6,9	830	3828	555	65	3590	29	48	65	2	1	60	15	323	50
32	6,9	852	4010	581	47	3674	56	56	47	3	1	79	21	246	64
33	5,1	735	4436	870	48	4373	2	12	48	0	0	31	4	784	15
34	5,9	750	4297	728	47	4220	3	15	47	1	0	33	5	727	35
35	5,9	796	3827	649	46	3640	16	38	46	0	0	63	16	573	52
36	5,9	860	3597	610	51	3179	76	49	51	5	1	105	45	306	76

$$\begin{aligned} \frac{dy_{C_{2}H_{6}}}{d\tau} &= 2k_{1}\cdot p \cdot C_{O_{2}} - 2k_{2}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{C_{2}H_{6}} \\ \frac{dy_{CO_{2}}}{d\tau} &= 2k_{5}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{C_{2}H_{4}} + k_{6}\cdot p \cdot C_{O_{2}} - \\ &- k_{7}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{H_{2}} \left[1 - \frac{C_{CO} \cdot C_{H_{2}O}}{K_{7} \cdot C_{CO_{2}} \cdot C_{H_{2}}} \right] \\ \frac{dy_{CO}}{d\tau} &= 2k_{4}\cdot p^{2} \cdot C_{C_{2}H_{4}} \cdot C_{O_{2}} + \\ &+ 2k_{7}\cdot p^{2} \cdot C_{CO_{2}} \cdot C_{H_{2}} \left[1 - \frac{C_{CO} \cdot C_{H_{2}O}}{K_{7} \cdot C_{CO_{2}} \cdot C_{H_{2}}} \right] \\ \frac{dy_{H_{2}}}{d\tau} &= -k_{7}\cdot p^{2} \cdot C_{CO_{2}} \cdot C_{H_{2}} \left[1 - \frac{C_{CO} \cdot C_{H_{2}O}}{K_{7} \cdot C_{CO_{2}} \cdot C_{H_{2}}} \right] \\ \frac{dy_{H_{2}O}}{d\tau} &= 2k_{1}\cdot p \cdot C_{O_{2}} + 2k_{2}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{C_{2}H_{6}} + 2k_{3}\cdot p \cdot C_{O_{2}} + \\ &+ 2k_{4}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{C_{2}H_{4}} + 2k_{5}\cdot p^{2} \cdot C_{O_{2}} \cdot C_{C_{2}H_{4}} + 2k_{6}\cdot p \cdot C_{O_{2}} + \\ &+ k_{7}\cdot p^{2} \cdot C_{CO_{2}} \cdot C_{H_{2}} \left[1 - \frac{C_{CO} \cdot C_{H_{2}O}}{K_{7}\cdot C_{CO_{2}} \cdot C_{H_{2}}} \right] \end{aligned}$$

где τ — условное время контакта; $y_i = W_i/W_0$ — условная доля *i*-го компонента в потоке (*W*₀ и *W*_{*i*} — общий поток на входе в реактор и поток *i*-го компонента, мл/(ч·г)); p — общее давление в системе, атм; $C_i = y_i / \sum y_i$ —

мольная доля *i*-го компонента в системе; *k_i* — константа скорости *j*-ой реакции; К₇ — константа равновесия обратимой реакции 7.

Численные значения аррениусовских параметров для расчета констант скорости реакции $(\ln k_i = A_i + E_i/RT)$ в рамках кинетической модели процесса находили путем минимизации суммы квадратов относительных отклонений опытных и расчетных значений разностей выходных и входных потоков в реакторе методом Давидона-Флетчера—Пауэлла [32].

Получены следующие результаты:

	A_i	E_i/R
k_1	17,59	-11890
k_2	10,06	-9950
k_3	26,57	-20000
k_4	14,21	-2000
k_5	13,87	-10050
k_6	26,21	-18870
k_7	13,41	-2000

Средние относительные погрешности описания разностей выходных и входных потоков составили: для $CH_4 - 32,3\%$; $O_2 - 24,4\%$; $C_2H_4 - 35,9\%$; $C_2H_6 -$ 49,5%; CO₂ — 34,3%; CO — 48,1%.

Математическое моделирование и теоретическая оптимизация процесса

На основе кинетической модели выполнены математическое моделирование и теоретическая оптимизация процесса окислительной димеризации метана, осуществляемого в реакторе идеального вытеснения в квазигомогенном приближении. Были исследованы зависимости конверсии кислорода и селективности образования этана и этилена от условного времени контакта, температуры, давления и объемного соотношения реагентов. Решение системы дифференциальных уравнений кинетической модели проводили с использованием программы DLSODE, обычно применяемой для решения задачи Коши в случае интегрирования жестких систем обыкновенных дифференциальных уравнений методом Гира [33].

Зависимость конверсии кислорода от времени контакта реагентов и температуры

Принимая во внимание, что в условиях промышленной реализации процесса потребуется рецикл избыточного метана, представляется важным оценить условное время контакта, необходимое для достижения глубокой конверсии кислорода. На рис. 1 представлена зависимость конверсии кислорода от времени контакта при постоянном объемном соотношении реагентов (3:1), давлении 0,1 МПа и различных температурах. Глубокая конверсия кислорода (≥95%) достигается при температуре 700 °C за 0,9 с и с повышением температуры до 1000 °С время контакта уменьшается до 0,009 с.

Влияние давления на конверсию кислорода

В связи с тем, что в условиях промышленной реализации процесса потребуется поддержание в реакторе некоторого избыточного давления, была проведена оценка его влияния на основные показатели процесса.

Рис. 1. Зависимость конверсии кислорода от времени контакта реагентов и температуры при давлении 0,1 МПа и CH₄:O₂ = 3:1

+

Рис. 2. Зависимость конверсии кислорода от времени контакта реагентов и температуры при давлении 0,17 МПа и CH₄:O₂ = 3:1

На рис. 2 представлены зависимости конверсии кислорода от времени контакта при давлении 0,17 МПа. Сравнение рис. 1 и 2 показывает, что с увеличением давления время контакта, необходимое для достижения одинаковой конверсии кислорода, уменьшается. Так, если при давлении 0,1 МПа и температуре 700 °С полная конверсия кислорода достигается за 0,9 с, то при давлении 0,17 МПа и при той же температуре время контакта составляет 0,5 с.

Влияние соотношения реагентов на конверсию кислорода

Из сравнения зависимостей конверсии кислорода от времени контакта при различных температурах и соотношении реагентов, равном 3:1 (рис. 1) и 6:1 (рис. 3)

Рис. 3. Зависимость конверсии кислорода от времени контакта реагентов и температуры при давлении 0,1 МПа и $CH_4:O_2=6:1$

можно заключить, что с увеличением соотношения $CH_4:O_2$ время достижения полной конверсии кислорода уменьшается. При температуре 800 °C и соотношении реагентов 3:1 это время составляет 0,25 с, а при соотношении 6:1 — 0,18 с.

Зависимость селективности реакции от конверсии кислорода и температуры

На рис. 4*а* представлена зависимость селективности процесса по сумме этана и этилена от конверсии кислорода при различных температурах. Видно, что с увеличением конверсии кислорода селективность процесса уменьшается, однако зависимость от температуры имеет сложный характер. С повышением температуры до 800 °C селективность процесса уменьшается, а затем

Рис. 4. Зависимость селективности процесса по этан-этиленовой смеси от конверсии кислорода при различных температурах (*a*) и от температуры при различной конверсии кислорода (*б*) при давлении 0,1 МПа; CH₄:O₂ = 3:1

Рис. 5. Зависимость селективности процесса по этану и по этилену от температуры при различной конверсии кислорода; p = 0,1 МПа, CH₄:O₂ = 3:1

возрастает. Чтобы установить характер этой зависимости, результаты моделирования были представлены на фазовой плоскости селективность—температура при трех уровнях конверсии — 20, 55 и 95% (рис. 4*б*). Из полученного графика следует, что температурная зависимость селективности по этан-этиленовой смеси носит экстремальный характер с выраженным минимумом. Так, при 95%-ной конверсии кислорода минимальная селективность наблюдается при температуре 800 °С и составляет 30,4%. С уменьшением степени превращения кислорода экстремум сглаживается.

Чтобы установить причины столь необычной зависимости селективности образования продуктов C_2 от температуры, были построены температурные зависимости для каждого из целевых продуктов — этана и этилена (рис. 5). Оказалось, что в исследованной области температур эти зависимости носят антибатный характер, вследствие чего зависимость суммарной селективности приобретает экстремальный характер.

Влияние давления и соотношения реагентов на селективность процесса

Сопоставление температурных зависимостей селективности процесса по этан-этиленовой смеси (объемное соотношение реагентов 3:1) при различном давлении (см. рис. 46 и рис. 6) показывает, что с увеличением давления селективность образования этан-этиленовой смеси несколько уменьшается.

С увеличением объемного соотношения реагентов селективность процесса несколько увеличивается: при соотношении 3:1 минимальная селективность составляет 30,4%, а при соотношении 6:1 достигает 36,0% (ср. рис. 46 и рис. 7).

Рис. 6. Зависимость селективности процесса по этан-этиленовой смеси от температуры и конверсии кислорода при давлении 0,17 МПа

Анализ результатов теоретической оптимизации окислительной димеризации метана (табл. 2) позволяет локализовать область параметров, при которых достигается максимум селективности процесса продуктов С₂:

1) область пониженной температуры 700—750 $^{\circ}\mathrm{C}$

2) область повышенной температуры 850—950 °С.

Оптимальное давление 1,0—1,7 ата, т.е. близкое к атмосферному. Повышение давления нежелательно, поскольку приводит к снижению селективности. Оптимальное объемное соотношение реагентов $CH_4:O_2$ лежит в пределах 3:1—6:1. Увеличение соотношения благоприятно сказывается на селективности, однако приводит к увеличению рецикла метана. Вместе с тем следует отметить, что время контакта, необходимое для достижения 95%-ной конверсии кислорода, составляет в об-

Рис. 7. Зависимость селективности процесса по этан-этиленовой смеси от температуры при различной конверсии кислорода; $CH_4:O_2 = 6:1$

Таблииа 2

<i>р</i> , атм	СН ₄ :О ₂ , об. доли	t, °C	Время достижения 95%-ной конверсии О2, с	Селективность процесса		
			-	${}^{\Pi 0}_{C_2H_4} + C_2H_6, \%$	по С ₂ Н ₄ , %	
1	3:1	700	0,9	43,06	1,3	
		800	0,25	30,4	8,5	
		1000	0,009	45,6	35,26	
1,7	3:1	700	0,5	42,52	0,77	
		800	0,09	28,4	5,24	
		1000	0,0035	39,0	31,56	
1	6:1	700	0,65	43,94	2,2	
		800	0,18	35,94	13,02	
		1000	0,01	44,48	38,06	

Результаты теоретической оптимизации процесса окислительной лимеризации метана

ласти низких температур 0,4—0,9 с, а в области высоких температур 0,02—0,125 с. Это обстоятельство также следует учитывать при выборе оптимальных условий, так как время контакта при прочих равных условиях определяет удельную производительность катализатора.

* * *

Работа выполнена при финансовой поддержке программы Президиума РАН № 7 «Фундаментальные проблемы энергетики» (подпрограмма «Теоретические основы технологии моторных топлив и базовых нефтепродуктов из ненефтяного сырья»), РФФИ (гранты 07-03-00533-а и 07-03-12039-офи) и гранта Президента РФ для поддержки ведущих научных школ Российской Федерации (научная школа акад. И.И. Моисеева).

Авторы выражают благодарность кандидату физикоматематических наук А.Г. Зыскину за консультативную помощь в проведении расчетных работ и обсуждение настоящей работы.

ЛИТЕРАТУРА

- 1. Крылов О.В., Арутюнов В.С. Окислительные превращения метана. М.: Наука, 1998, 361 с.
- Дедов А.Г., Локтев А.С., Моисеев И.И., Меньщиков В.А., Филимонов И.Н., Пархоменко К.В. Химическая промышленность сегодня, 2003, № 3, с. 12—25.
- 3. Fox J.M. Catal. Revs-Sci. Eng., 1993, v. 35, № 2, p. 169-212.
- 4. Lunsford J.H. Angew. Chem. Intern. Ed., 1995, v. 34, № 9, p. 970–980.
- 5. Sokolovskii V.D. Catal. Revs-Sci. Eng., 1990, v. 32, № 1—2, p. 1—49.
- 6. Hutchings G.J., Scurrell M.S., Woodhouse J.R. Chem. Soc. Rev., 1989, v. 18, p. 251–283.
- Amenomiya Y., Birs V.I., Goledzinowski M. e. a. Catal. Revs-Sci. Eng., 1990, v. 32, № 3, p. 163—227.
- Pratt S., Wiley D.B., Harris I.R. Platinum Metals Review., 1999, v. 43, № 2, p. 50—58.
- 9. Lunsford J.H. Catal. Today, 2000, v. 63, p. 165-174.
- 10. Арутюнов В.С., Крылов О.В. Успехи химии, 2005, т. 74, № 12, с. 1237—1245.

- 11. Keller G.F., Bhasin M.M. J. Catal., 1982, v. 73, № 1, p. 9-19.
- 13. Sofranko J.A., Leonard J.L., Jones C.A. J. Calal., 1987, v. 103, № 2, p. 302—310.
- 14. Gaffney A.M., Jones C.A. Leonard J.L., Sofranko J.A. Ibidl., 1988, v. 114, № 2, p. 422–432.
- 15. Haggin J. Chem. and Eng. News, 1988, № 27, p. 22.
- 16. Патент США 4499323, МКИ³ С07С 2/00. Опубл. 12.02.1985.
- 17. Патент США 4727211, МКИ³ С07С 2/00. Опубл. 23.02.1988.
- 18. Патент США 4727212, МКИ³ СО7С 2/00. Опубл. 23.02.1988.
- 19. Патент США 4499324, МКИ³ С07С 2/00. Опубл. 12.02.1985.
- 20. Hinsen W., Bytin W., Baerns M. Proc. VIII Int. Congress on Catalysis (West Berlin, 1984). Basel: Weinheim, 1984, v. 3, p. 581–592.
- 21. Ito T., Lunsford J.H. Nature, 1985, v. 314, № 6013, p. 721-722.
- 22. Otsuka K., Jinno K, Morikava A. J. Catal., 1986, v. 100, p. 353-359.
- 23. Yu L., Li W., Martin G.A., Mirodatos C., Ducarme V. Appl. Catal. A, 1998, v. 175, p. 173—179.
- 24. Choudhary V.R., Mulla S.A.R., Uphade B.S. Fuel, 1999, v. 4, p. 427-437.
- 25. Machocki A., Denis A. Proc. 5th Int. Natural Gas Conversion Symp., Giardini-Naxos. Sicily, 1998, v. 119, p. 313.
- 26. Bajus M., Back M.H. Proc. 5th Int. Natural Gas Conversion Symp., Giardini-Naxos. Sicily, 1998, v. 119, p. 289.
- 27. Патент РФ 2134675, МКИ⁵ С07С 2/48. Опубл. 20.08.1999 г., Б.И. № 23.
- 28. Дедов А.Г., Локтев А.С., Меньщиков В.А., Карташева М.Н., Пархоменко К.В., Моисеев И.И. Докл. АН, 2001, т. 380, № 6, с. 791—794.
- 29. Дедов А.Г., Локтев А.С., Меньщиков В.А., Пархоменко К.В., Лякишев Г.Г., Моисеев И.И. Химическая технология, 2003, № 4, с. 5—10.
- 30. Махлин В.А., Дедов А.Г., Локтев А.С., Пархоменко К.В., Тельпуховская Н.О., Эвенчик А.С., Моисеев И.И. Там же, 2006, № 7, с. 29—34.
- Dedov A.G., Loktev A.S., Moiseev I.I., Aboukais A., Lamonier J.-F., Filimonov I.N. Appl. Catal. A, 2003, v. 245, p. 209–220.
- 32. Fletcher R., Powel M. Computer Journal, 1963, v. 6, № 2, p. 163—168.
- Gear C.W. Numerical initial value problems in ordinary differential equations. N.-Y., Prentice Hall, Englewood Cliffs, 1971, 252 p.