УДК 547.313 + 542.952.6 + 54-44 1

# Роль кислотных центров в формировании нанесенных катализаторов полимеризации олефинов на основе металлоценов

## Н. В. Семиколенова, В. Н. Панченко, И. Г. Данилова, Е. А. Паукштис, Л. Г. Ечевская, Е. П. Талзи, В. А. Захаров

НИНА ВЛАДИМИРОВНА СЕМИКОЛЕНОВА — кандидат химических наук, старший научный сотрудник Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: каталитическая полимеризация олефинов, металоорганические катализаторы.

ВАЛЕНТИНА НИКОЛАЕВНА ПАНЧЕНКО — младший научный сотрудник Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: каталитическая полимеризация олефинов, металоорганические катализаторы.

ИРИНА ГЕННАДЬЕВНА ДАНИЛОВА — младший научный сотрудник Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: инфракрасная спектроскопия, гетерогенный катализ, кислотный катализ.

ЕВГЕНИЙ АЛЕКСАНДРОВИЧ ПАУКШТИС — доктор химических наук, профессор, заведующий лабораторией Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: инфракрасная спектроскопия, гетерогенный катализ, кислотный катализ.

ЛЮДМИЛА ГЕННАДЬЕВНА ЕЧЕВСКАЯ — кандидат химических наук, научный сотрудник Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: каталитическая полимеризация олефинов, сополимеризация, строение полимеров.

ЕВГЕНИЙ ПАВЛОВИЧ ТАЛЗИ — доктор химических наук, заведующий лабораторией Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: ЭПР и ЯМР спектроскопия гомогенных катализаторов.

ВЛАДИМИР АЛЕКСАНДРОВИЧ ЗАХАРОВ — доктор химических наук, профессор, заведующий лабораторией Института катализа им. Г.К. Борескова СО РАН. Область научных интересов: каталитическая полимеризация олефинов, металоорганические катализаторы.

630090 Новосибирск, просп. акад. Лаврентьева 5, Институт катализа им. Г.К. Борескова СО РАН, тел. (3832)39-72-83, E-mail NVSemico@catalysis.nsk.su

В последние годы прогресс в области каталитической полимеризации олефинов связан с созданием каталитических систем, позволяющих целенаправленно регулировать молекулярную структуру полимеров. Каталитические системы на основе металлоценовых комплексов элементов IV группы являются в этом отношении наиболее перспективными. Катализаторы этого типа обладают чрезвычайно высокой активностью и характеризуются высокой однородностью активных центров («одноцентровые» катализаторы), практически недостижимой для традиционных катализаторов Циглера—Натта [1—5]. Металлоценовые катализаторы целенаправленно позволяют регулировать молекулярную структуру полимеров за счет

варьирования строения органических лигандов металлоцена и получать широкий спектр новых полимерных материалов с улучшенными характеристиками.

Уникальные каталитические свойства металлоценовых систем связаны также с использованием новых типов активаторов (сокатализаторов): полиметилалюмоксана и перфторарилборатных соединений. Получены убедительные доказательства того, что при взаимодействии этих активаторов, обладающих свойствами кислот Льюиса, с металлоценом формируются ионные пары, в частности, для металлоценов типа  $[Cp_2MR]^{+}[A]^{-}$  (Cp — циклопентадиенил, M = Ti, Zr, Hf; A — некоординирующий анион, образующийся

из соединения-активатора), которые являются предшественниками активных центров полимеризации [5—8].

#### Постановка задачи исследования

Одним из наиболее перспективных направлений в области металлоценового катализа является разработка нанесенных катализаторов. Интерес к нанесенным металлоценовым катализаторам, которые сохраняли бы достоинства гомогенных систем, обусловлен тем, что по ряду технологических причин в процессах суспензионной и газофазной полимеризации практическое использование катализаторов возможно только в нанесенной форме. Поэтому в настоящее время ведутся интенсивные исследования по созданию нанесенных катализаторов на основе металлоценов. Имеющиеся пока сведения о процессах формирования нанесенных металлоценовых катализаторов ограничены и носят в основном описательный характер [9—11].

В данной работе суммированы результаты, полученные нами при изучении процесса формирования активного компонента нанесенных металлоценовых катализаторов и его реакционной способности [12—17]. Предмет наших исследований — кислотные центры метилалюмоксана и других активаторов и их вклад в каталитическую активность металлоценовых систем. В рамках проекта предполагалось рассмотрение следующих аспектов: 1) кислотные свойства метилалюмоксана (МАО) (как в растворе, так и в нанесенной форме SiO<sub>2</sub>/MAO); 2) взаимодействие этого активатора с поверхностью силикагеля при формировании носителя SiO<sub>2</sub>/MAO; 3) взаимодействие металлоценов (на примере цирконоцена) с носителем SiO<sub>2</sub>/MAO; 4) возможность активации цирконоцена твердыми кислотами Льюиса (высокодисперсный хлорид магния, различные модификации оксида алюминия); 5) влияние состава нанесенных металлоценовых катализаторов на реакционную способность их активных центров в процессах полимеризации и сополимеризации этилена с α-олефинами.

#### Результаты и обсуждение

#### Кислотные свойства метилалюмоксана

Метилалюмоксан является ключевым компонентом, определяющим уникальные каталитические свойства металлоценовых систем. Он представляет собой олигомерный продукт неполного гидролиза триметилалюминия. Степень олигомеризации *п* в зависимости от метода приготовления МАО может меняться в широких пределах (n = 4 того, MAO кроме всегда содержит значительное количество свободного триметилалюминия. Предполагается, что активирующая роль МАО в составе металлоценовой системы заключается в отрыве метильного аниона от молекулы металлоцена, в частности диметилцирконоцена, с образованием каталитически активных катионоподобных комплексов:

 $Cp_2ZrMe_2 + MAO \rightarrow [Cp_2ZrMe]^{\dagger}[MAO-CH_3]^{-}(1)$ 

В этом процессе МАО выступает в роли сильной кислоты Льюиса. Что касается природы и силы кислотных центров МАО и их содержания, то такие данные отсутствуют.

Для идентификации льюисовских кислотных центров в МАО нами был применен метод ЭПР с использованием спиновой метки — стабильного нитроксильного радикала 2,2,6,6-тетраметилпиперидин-N-оксила (ТЕМПО) [13, 14]. Параметры сигналов в спектрах ЭПР свободного ТЕМПО и ТЕМПО, координационно связанного с кислотным центром, существенно различаются и зависят от силы кислотного центра, что позволяет использовать метод ЭПР для изучения кислотных центров как в гетерогенных, так и в гомогенных системах.

Из спектров ЭПР образцов МАО с различным содержанием триметилалюминия следует, что свободный АІМез, содержащийся в МАО, разрушает радикальный центр молекулы ТЕМПО, однако координация нитроксильного радикала с кислотными центрами МАО препятствует этому процессу. Сразу после перемешивания растворов ТЕМПО и МАО сигнал ЭПР исходного ТЕМПО, характеризуемый константой сверхтонкого расщепления  $a_N$  = 15,5 Гс, исчезает и появляется новый триплет с  $a_N$  = 18,6 Гс. Такое значение  $a_N$  типично для аддуктов ТЕМПО с кислотами Льюиса. Интенсивность этого сигнала со временем уменьшается, при этом растет интенсивность нового сигнала триплета секстетов ( $a_N = 19,6 \, \Gamma c$  и  $a_{AI} = 1,7 \, \Gamma c$ ). Анализ полученных данных показал, что метилалюмоксан содержит два типа льюисовских кислот-(ЛКЦ). центров Триплет  $(a_{\rm N} = 18,6 \, \Gamma c)$ принадлежит ТЕМПО, связанному с центрами типа I (ЛКЦ-I), а триплет секстетов ( $a_N$  = 19,6 Гс и  $a_{\rm Al}$  = 1,7 Гс) — ТЕМПО, связанному с центрами II

Сравнение данных ЭПР для модельных образцов AIEtCI<sub>2</sub>/ТЕМПО и AIEt<sub>2</sub>CI/ТЕМПО с образцами МАО/ТЕМПО позволяет полагать, что ЛКЦ-І, повидимому, представляют собой координационно ненасыщенные атомы алюминия в окружении  $[Me_2AIO]$ , а ЛКЦ-II — в окружении  $[MeAIO_2]$ . Константа  $a_{AI}$  = 1,7 Гс, характерная для ТЕМПО, связанного с ЛКЦ метилалюмоксана, заметно меньше, чем для аддуктов TEMПО с AlEt<sub>2</sub>Cl ( $a_{Al}$  = 3,5 Гс) и AIEtCl<sub>2</sub> ( $a_{AI}$  = 6,7 Гс), следовательно, ЛКЦ МАО имеют более низкую кислотность, чем ЛКЦ AIEt<sub>2</sub>CI и AIEtCl<sub>2</sub>. Таким образом, можно полагать, что метилалюмоксан не содержит аномально сильных кислотных центров и, по-видимому, его уникальные активирующие свойства определяются благоприятным сочетанием умеренной льюисовской

кислотности и низкой координирующей способности аниона [Me-MAO]<sup>-</sup>.

Согласно данным ЭПР, количество ЛКЦ обоих типов в МАО составляет один кислотный центр на  $100 \pm 30$  атомов алюминия. По-видимому, ЛКЦ МАО находятся во взаимодействии с AlMe<sub>3</sub>, всегда присутствующим в коммерческих образцах МАО (схема 2). Молекула ТЕМПО конкурирует с AlMe<sub>3</sub> за кислотный центр МАО (схема 3).

$$\begin{array}{c} -O \\ Al - Me + AlMe_3 \end{array} \longrightarrow \begin{array}{c} -O \\ Al - Me \end{array} \xrightarrow{AlMe_2} AlMe_2$$

$$-O \\ Me \\ Al - Me + TEMPO \longrightarrow \begin{array}{c} -O \\ Al - Me \end{array} \xrightarrow{Al} (3)$$

TEMPO

Полученные нами результаты позволили заключить, что 1) метилалюмоксан содержит только относительно слабые ЛКЦ, количество которых не превышает 1 центр на 1 олигомер МАО; 2) кислотные центры метилалюмоксана, вероятно, обратимо взаимодействуют с триметилалюминием. Таким образом, реальное число свободных ЛКЦ МАО, способных активировать металлоцен очень мало (значительно меньше, чем один центр на  $100 \pm 30$  атомов алюминия).

Взаимодействие МАО с поверхностью силикагеля

В качестве носителя для приготовления нанесенных каталитических систем на основе металлоценов наиболее широко используется силикагель, модифицированный обработкой МАО [9—11]. Предполагается, что МАО ковалентно связывается с силикагелем за счет взаимодействия AI-CH<sub>3</sub> групп МАО с поверхностными гидроксильными группами силикагеля, однако доказательства такой схемы в литературе отсутствуют.

С использованием метода ИК-спектроскопии мы изучили процесс взаимодействия  $SiO_2$  с образцами МАО, содержащими различное количество AIMe<sub>3</sub>: коммерческий образец МАО, включающий ~30% AIMe<sub>3</sub> (MAO-1), и образец МАО с пониженным содержанием триметилалюминия, ~3% AIMe<sub>3</sub> (MAO-2) [15].

Данные ИК-спектроскопии (рис. 1) и химический анализ образцов носителей показали, что триметилалюминий, входящий в состав МАО, и олигомеры МАО закрепляются на поверхности силикагеля различным способом. Триметилалюминий протолитически взаимодействует с терминальными гидроксильными и силоксановыми группами силикагеля, о чем свидетельствует исчезновение полосы поглощения 3745 см<sup>-1</sup> от терминальных

ОН-групп силикагеля и появление полос 2944, 2894, 2850 и 2830 см $^{-1}$ , характеризующих валентные колебания групп СН $_3$  в составе фрагментов Al-CH $_3$  и Si-CH $_3$  (рис. 1, кривая 2). ИК-спектр образца SiO $_2$ /MAO-1 (кривая 3) аналогичен спектру образца SiO $_2$ /AlMe $_3$ , хотя содержание алюминия в первом образце существенно выше, чем в системе SiO $_2$ /AlMe $_3$  (10,3 и 3,9%, соответственно).

При взаимодействии образца МАО-2 с поверхностью силикагеля сохраняется значительная часть его ОН-групп (высокая интенсивность полосы  $3745~{\rm cm}^{-1}$ , кривая 4). В спектре также появляется полоса  $3615~{\rm cm}^{-1}$ , обусловленная образованием водородных связей между терминальными ОН-группами силикагеля и кислородными атомами или  ${\rm CH}_3$ -группами МАО. Носитель  ${\rm SiO}_2/{\rm MAO}$ -2 содержит только 1,45% (масс.) алюминия ([AI]/[OH] = 0,6). На основании этих результатов можно заключить, что МАО-2 в основном адсорбируется на ОН-группах силикагеля и не взаимодействует с ними по реакции протолиза.

Полученные нами данные позволяют предложить следующую схему формирования носителя  $SiO_2/MAO-1$  (схема 4). При взаимодействии силикагеля с коммерческим MAO, содержащим значительное количество свободного  $AlMe_3$ , на первом этапе осуществляется протолитическое взаимодействие гидроксильных групп силикагеля со свободным  $AlMe_3$  (реакции 4а и 4б), затем олигомеры MAO адсорбируются на образовавшихся поверхностных алюминийорганических соединениях (реакция 4в):

$$\equiv Si - OH + Al(CH_3)_3 \rightarrow \equiv Si - O - Al(CH_3)_2 + CH_4 \quad (4a)$$
 
$$\equiv Si - O - Si + Al(CH_3)_3 \rightarrow \equiv Si - O - Al(CH_3)_2 + Si - CH_3$$

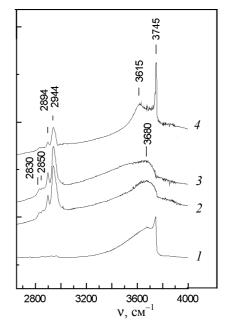



Рис. 1. ИК-спектры исходного силикагеля (400 °C) (1) и носителей  $SiO_2/AIMe_3$  (2),  $SiO_2/MAO-1$  (3) и  $SiO_2/MAO-2$  (4)

$$\equiv Si - O - AI(CH_3)_2 + MAO \rightarrow \equiv Si - O - AI(CH_3)_2 \cdots MAO$$

$$(46)$$

$$(48)$$

В дальнейшем при сушке носителя не связанные химически с поверхностью силикагеля олигомеры МАО формируют, по-видимому, отдельную фазу МАО. Микрочастицы МАО распределены по поверхности силикагеля неравномерно и, не имея прочной химической связи с силикагелем, могут легко десорбироваться с его поверхности как при нанесении металлоцена, так и в процессе полимеризации [12, 18, 19].

Неоднородность распределения МАО на пористой поверхности силикагеля и возможность достаточно легкого удаления МАО вместе с металлоценом (цирконоценом) из носителя SiO<sub>2</sub>/MAO являются одной из наиболее серьезных проблем при использовании этих катализаторов в промышленных условиях.

#### Кислотные свойства носителей SiO<sub>2</sub>/MAO

Кислотные центры, образующиеся на поверхности носителей  $SiO_2/MAO$ , играют ключевую роль в формировании активных центров нанесенных катализаторов  $SiO_2/MAO$ /металлоцен. Методом, сочетающим ИК-спектроскопию с низкотемпературной адсорбцией молекулы-зонда СО, который широко применяется для характеристики кислотных свойств твердых кислот Льюиса (оксиды алюминия, цеолиты и др.), нами были изучены льюисовские кислотные центры силикагеля, модифицированного триметилалюминием и МАО с различным содержанием AlMe<sub>3</sub> [15, 16].

ИК-спектры монооксида углерода, адсорбированного на носителях  $SiO_2/AlMe_3$ ,  $SiO_2/MAO-1$  и  $SiO_2/MAO-2$ , (рис. 2) содержат полосы 2138 см $^{-1}$  от физически адсорбированного СО и полосы в области 2190—2220 см $^{-1}$ , относящиеся к комплексам СО с поверхностными ЛКЦ различной силы. Эти данные свидетельствуют о присутствии на поверхности рассматриваемых носителей двух типов поверхностных ЛКЦ: слабые ЛКЦ, характеризуемые полосами 2194 см $^{-1}$ , и ЛКЦ средней силы (2204—2212 см $^{-1}$ ). В табл. 1 приведены расчетные

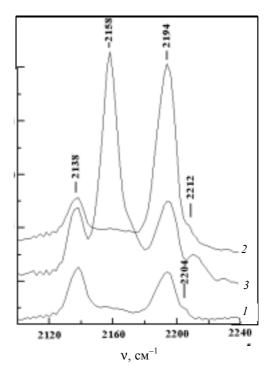



Рис. 2. ИК-спектры CO, адсорбированного на  $SiO_2/AIMe_3$  (1),  $SiO_2/MAO-1$  (2) и  $SiO_2/MAO-2$  (3). 77 K, 0,18 мм рт.ст.

данные о количестве ЛКЦ в исследованных носителях. Видно, что для этих носителей количество и соотношение ЛКЦ разной силы существенно различаются. В носителе  $SiO_2/MAO-2$  количество атомов алюминия, обладающих льюисовской кислотностью, максимально. Наиболее сильные ЛКЦ (2212 см $^{-1}$ ) образуются в результате адсорбции олигомеров МАО на поверхность силикагеля. Однако следует иметь в виду, что в носителе  $SiO_2/MAO-2$  сохраняется большая часть гидроксильных групп силикагеля (см. рис. 1), которые могут вступать в побочные реакции с наносимым металлоценом (цирконоценом). Таким образом, модификация силикагеля МАО приводит к появлению ЛКЦ на поверхности такого носителя.

Данные по оценке ЛКЦ на поверхности носителей  $SiO_2/AlMe_3$ ,  $SiO_2/MAO-1$  и  $SiO_2/MAO-2$  , полученные методом ЭПР с использованием ТЕМПО в

Таблица 1

Содержание ЛКЦ в носителях SiO<sub>2</sub>/AIMe<sub>3</sub> и SiO<sub>2</sub>/MAO

| COMOPINATION THE BILLDING OF BEAUTY |           |           |               |                  |                 |                                    |                                |
|-------------------------------------|-----------|-----------|---------------|------------------|-----------------|------------------------------------|--------------------------------|
| Носитель                            | Содеря    | кание AI, | Количес       | тво ЛКЦ, м       | икмоль/г        | отношение                          |                                |
|                                     | % (масс.) | мкмоль/г  | $\Sigma^{1)}$ | CC <sup>2)</sup> | C <sub>3)</sub> | $\frac{Al_{\Sigma}}{ЛКЦ_{\Sigma}}$ | $\frac{Al_{\Sigma}}{ЛКЦ_{CC}}$ |
| SiO <sub>2</sub> /AlMe <sub>3</sub> | 3,9       | 1420      | 7,4           | 0,2              | 7,2             | 192                                | 7100                           |
| SiO <sub>2</sub> /MAO-1             | 10,3      | 3815      | 28,6          | 0,8              | 27,8            | 133                                | 4770                           |
| SiO <sub>2</sub> /MAO-2             | 1,5       | 537       | 15,8          | 2,7              | 13,1            | 34                                 | 200                            |

 $<sup>^{1)}</sup>$  Суммарное содержание льюисовских кислотных центров;  $^{2)}$  ЛКЦ средней силы ( $v_{CO}$  = 2204—2212 см $^{-1}$ );  $^{3)}$  Слабые ЛКЦ ( $v_{CO}$  = 2194 см $^{-1}$ ).

качестве спиновой метки, соответствуют результатам, полученным с применением метода ИКспектроскопии.

Взаимодействие диметилцирконоцена с носителем  $SiO_2$  /MAO и связь активности нанесенных катализаторов в полимеризации олефинов с кислотными свойствами носителя

Адсорбцией диметилцирконоцена  $Cp_2ZrMe_2$  на носитель  $SiO_2/MAO-1$  были приготовлены два образца катализатора: катализатор А — обработка носителя избытком раствора  $Cp_2ZrMe_2$ , тщательная промывка растворителем и сушка в вакууме; катализатор В — адсорбция на носитель расчетного количества  $Cp_2ZrMe_2$  (для получения заданного содержания циркония в образце) и сушка в вакууме без дополнительных промывок.

Результаты оценки ЛКЦ в исходном носителе и катализаторах А и В методом ИК-спектроскопии адсорбированного СО [16], а также их активность в полимеризации этилена приведены в табл. 2. Сопоставление данных, полученных для носителя SiO<sub>2</sub>/MAO-1 и катализаторов SiO<sub>2</sub>/MAO-1/Cp<sub>2</sub>ZrMe<sub>2</sub> (образцы А и В), показывает, что количество циркония, закрепившегося на катализаторах, соответствует числу занятых ЛКЦ ( $Zr/\Delta$ LКЦ  $\approx$  1). При снижении содержания циркония в катализаторе (образец В) цирконоцен преимущественно взаимодействует с ЛКЦ средней силы носителя. В случае избытка Cp<sub>2</sub>ZrMe<sub>2</sub> (катализатор A) во взаимодействие с цирконоценом вовлекается заметное количество слабых ЛКЦ. Активность катализатора В заметно выше, чем катализатора А.

Таким образом, на основании полученных результатов можно заключить, что 1) цирконоцен взаимодействует с обоими типами ЛКЦ носителя  $SiO_2$  /MAO; 2) цирконоцен в первую очередь взаимодействует с более сильными ЛКЦ; 3) активные центры катализатора  $SiO_2$ /MAO/Cp<sub>2</sub>ZrMe<sub>2</sub> формируются преимущественно при взаимодействии цирконоцена с наиболее сильными ЛКЦ.

Для проверки последнего предположения нами

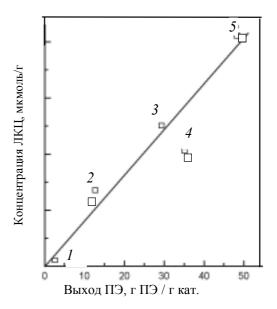



Рис. 3. Зависимость выхода полиэтилена (ПЭ) от содержания ЛКЦ средней силы ( $v_{CO}$  = 2204—2212 см $^{-1}$ ) в носителях SiO<sub>2</sub>/MAO(AlMe<sub>3</sub>) для катализаторов Cp<sub>2</sub>ZrCl<sub>2</sub>/носитель.

Носители: 1 —  $SiO_2(400~^{\circ}C)/AIMe_3$ ; 2 —  $SiO_2(400~^{\circ}C)/MAO-2$ ; 3, 4, 5 —  $SiO_2/MAO-1$ , температура обработки силикагеля 700  $^{\circ}C$  (3), 100  $^{\circ}C$  (4), 400  $^{\circ}C$  (5)

Условия полимеризации: 80 °С, давление этилена 10 атм, растворитель — гептан, сокатализатор —  $Al(i-Bu)_3$ , время реакции 1 ч

проведена оценка каталитической активности катализаторов на основе  $Cp_2ZrCl_2$  и ряда носителей ( $SiO_2/MAO-1$ ,  $SiO_2/MAO-2$ ,  $SiO_2/AlMe_3$ ) в полимеризации этилена [15, 16]. Полученные данные были сопоставлены с содержанием ЛКЦ в носителях (рис. 3). Приведенные на рис. 3 данные показывают, что с увеличением содержания более сильных ЛКЦ в носителях выход полиэтилена, полученный в присутствии соответствующих катализаторов, возрастает. Это подтверждает вывод о том, что активные центры нанесенных цирконоценовых

Таблица 2
Поверхностный состав носителей SiO₂/MAO-1 и катализаторов SiO₂/MAO-1/Cp₂ZrMe₂
и активность цирконоценовых систем в полимеризации этилена.
Условия полимеризации: 80 °C, в гептане, давление этилена 10 атм, без сокатализатора

**∆ЛКЦ<sup>3),</sup>** Катализатор Количество ЛКЦ, мкмоль/г [Zr], Zr/ΔЛКЦ Активность, кг ПЭ/(г Zr•ч) мкмоль/ мкмоль/г Γ носитель катализатор  $C^{1)}$ CC<sup>2)</sup>  $C^{1)}$ CC<sup>2)</sup> Α 49 5 10 0 44 44 4.6 70 27 0.96 14,8 51 26

<sup>&</sup>lt;sup>1)</sup> Слабые ЛКЦ ( $v_{CO} = 2194 \text{ cm}^{-1}$ ); <sup>2)</sup> ЛКЦ средней силы ( $v_{CO} = 2204 - 2212 \text{ cm}^{-1}$ );

 $<sup>^{3)}</sup>$   $\Delta$ ЛКЦ — разность между количеством ЛКЦ в носителе и катализаторе.

катализаторов формируются при взаимодействии цирконоцена с более сильными ЛКЦ носителя.

Твердые кислоты Льюиса как носители для катализаторов на основе металлоценов

Использование метилалюмоксана для активации металлоценов имеет ряд ограничений, а именно, высокая стоимость МАО, его пирофорность и возможность десорбции активного компонента с поверхности нанесенных систем. Поэтому встает задача разработки катализаторов с пониженным содержанием МАО или полностью исключающих МАО из его состава. В ряде работ, например [10, 20, 21], была показана возможность активации металлоценов поверхностными кислотными центрами твердых кислот Льюиса (MgCl<sub>2</sub>, Al<sub>2</sub>O<sub>3</sub>), однако активность систем такого типа без дополнительной модификации МАО оказалась невысокой. Нами было высказано предположение, что увеличение количества и силы

льюисовских кислотных центров этих носителей позволит повысить активность нанесенных на них металлоценовых систем. В табл. 3 сопоставлены данные о количестве и силе поверхностных кислотных центров исходных носителей (оксид алюминия и высокодисперсный хлорид магния), об-

разцов специально модифицированных носителей для увеличения льюисовской кислотности ( $Al_2O_3$  /M и MgCl $_2$  /M) и активности соответствующих нанесенных катализаторов на основе  $Cp_2ZrMe_2$ . Из представленных данных следует, что повышение силы поверхностных кислотных центров и увеличение их концентрации приводит к заметному увеличению активности нанесенных цирконоценовых катализаторов.

Влияние природы носителя на каталитические свойства нанесенных металлоценовых катализаторов

Влияние природы и кислотных свойств носителя на активность нанесенных металлоценовых катализаторов было изучено на примере реакции сополимеризации этилена с гексеном-1 в присутствии катализаторов, полученных нанесением  $Me_2Si(C_9H_6)_2ZrCl_2$  на носители  $SiO_2/MAO$  (катализатор I) и высокодисперсный хлорид магния (катализатор II) [17]. Полученные результаты приведены в табл. 4. С участием катализатора II образуется полимер с существенно более высокой молекулярной массой и кристалличностью, чем при использовании катализатора I. При сополимеризации этилена с гексеном-1 в присутствии катализатора I наблюдается

Таблица З Характеристики ЛКЦ носителей различного состава и активность нанесенного на них катализатора Ср₂ZrMe₂ в полимеризации этилена.

Условия полимеризации: 80 °C, давление этилена 10 атм, растворитель — гептан, без сокатализатора, время реакции 1 ч

| Носитель                                    | Т <sub>д</sub> <sup>1)</sup> , °С | $v^{2)}$ , cm <sup>-1</sup> | [ЛКЦ] <sup>2)</sup> ,<br>мкмоль/г | [Zr],     |          | Активность,<br>г ПЭ/(г Zr•ч) |
|---------------------------------------------|-----------------------------------|-----------------------------|-----------------------------------|-----------|----------|------------------------------|
|                                             |                                   |                             |                                   | % (масс.) | мкмоль/г |                              |
| MgCl <sub>2</sub>                           | _                                 | 2210,                       | 35                                | 0,7       | 77       | 1300                         |
|                                             |                                   | 2180,                       | 70                                |           |          |                              |
|                                             |                                   | 2170                        | 65                                |           |          |                              |
| MgCl <sub>2</sub> /M                        | _                                 | 2217,                       | _                                 | 0,4       | 44       | 2200                         |
|                                             |                                   | 2188,                       |                                   |           |          |                              |
|                                             |                                   | 2167                        |                                   |           |          |                              |
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub>    | 700                               | 2220,                       | 5                                 | 3,4       | 374      | 400                          |
|                                             |                                   | 2200,                       | 57                                |           |          |                              |
|                                             |                                   | 2190,                       | 46                                |           |          |                              |
|                                             |                                   | 2180                        | 66                                |           |          |                              |
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub>    | 500                               | 2192,                       | 400,                              | 2,7       | 297      | 100                          |
|                                             |                                   | 2180                        | 260                               |           |          |                              |
| $\gamma$ -Al <sub>2</sub> O <sub>3</sub> /M | 500                               | 2215,                       | 50                                | 1,5       | 165      | 4300                         |
|                                             |                                   | 2208                        | 120                               |           |          |                              |

<sup>1)</sup> Температура дегидроксилирования носителя в вакууме.

<sup>2)</sup> Определено по данным ИК-спектроскопии адсорбированного СО.

### Результаты сополимеризации этилена с гексеном-1 в присутствии нанесенных катализаторов SiO₂/MAO/Me₂Si(C9H6)₂ZrCl₂ (I) и MgCl₂/ Me₂Si(C9H6)₂ZrCl₂ (II)

Условия полимеризации: температура 70 °C с катализатором I, 80 °C с катализатором II, давление этилена 6 атм, растворитель — гептан, сокатализатор — трииодобензойная кислота, время реакции 1 ч.

|                                           | Катали                                                                                   | затор I | Катализатор II |         |  |  |
|-------------------------------------------|------------------------------------------------------------------------------------------|---------|----------------|---------|--|--|
|                                           | при мольном отношении [C <sub>6</sub> H <sub>12</sub> ]/[C <sub>6</sub> H <sub>4</sub> ] |         |                |         |  |  |
|                                           | 0                                                                                        | 0,4     | 0              | 3,3     |  |  |
| Активность катализатора, кг/(моль Zr•ч)   | 6400                                                                                     | 32000   | 6700           | 810     |  |  |
| Показатель текучести расплава, г/10 мин   | 0,18                                                                                     | 0,12    | < 0,01         | < 0,010 |  |  |
| Содержание гексена в сополимере, % (мол.) | 0                                                                                        | 2,1     | 0              | 2,4     |  |  |
| Константа сополимеризации <sup>*</sup>    | 19                                                                                       |         | 130            |         |  |  |
| Температура плавления сополимера, °C      | 134,3                                                                                    | 114,6   | 136,1          | 128,7   |  |  |

<sup>\*</sup> Рассчитано по экспериментальным данным [17].

заметное увеличение его активности (эффект сомономера) даже при относительно низком содержании гексена-1 в реакционной среде, при этом катализатор сохраняет высокую активность и стабильность в ходе полимеризации. В случае катализатора II активирующий эффект сомономера не наблюдался.

Для катализаторов I и II были определены константы сополимеризации  $r_1$ . Катализатор I имеет высокую сополимеризующую способность ( $r_1$  = 19), сопоставимую с таковой для аналогичной гомогенной системы ( $r_1$  = 25, [9]), сополимеризующая способность катализатора II существенно ниже ( $r_1$  = 130).

Таким образом, полученные результаты показывают, что различия в природе кислотных центров в носителях (MAO и MgCl<sub>2</sub>) приводят к формированию разных типов активных центров в нанесенных катализаторах  $SiO_2/MAO/$ цирконоцен и MgCl<sub>2</sub>/цирконоцен.

Полученные результаты могут служить основой для целенаправленного синтеза высокоактивных нанесенных катализаторов на основе металлоценов, перспективных для создания полимеров с заданным комплексом свойств.

\* \* \*

Работа выполнена при поддержке Российского фонда фундаментальных исследований (грант № 97-03-32546а).

#### ЛИТЕРАТУРА

1. Sinn H., Kaminsky W., Volmer H.J., Woldt R. Angew. Chem. Int. Ed. Engl., 1980, v. 19, p. 396.

- 2. Ewen J.A. J. Am. Chem. Soc., 1984, v. 106, p. 6355.
- 3. Kaminsky W., Kölper K., Brintzinger H.H., Wild F.R.W.P. Angew. Chem. Int. Ed. Engl., 1985, v. 24, p. 507.
- 4. Kaminsky W. Macromol. Chem. Phys., 1996, v. 197, p. 3907.
- 5. Hlatky G.G. Coord. Chem. Rev., 2000, v. 199, p. 235.
- 6. Bochmann V. J. Chem. Soc. Dalton Trans., 1996, p. 255.
- 7. Chen E.Y-H., Marks T. Chem. Rev., 2000, v. 100, p. 1391.
- 8. Babushkin D.E., Semikolenova N.V., Zakharov V.A., Talsi E.P. Macromol. Chem. Phys., 2000, v. 201, p. 558.
- 9. Kaminsky W., Renner F. Makromol. Chem., Rapid Commun., 1993, v. 14, p. 239.
- 10. Hlatky G.G. Chem. Rev., 2000, v. 100, p. 1347.
- 11. *Chien J.C.W., He D.I.* J. Polymer Sci. Part A: Polym. Chem., 1991, v. 29, p. 1603.
- 12. *Semikolenova N.V., Zakharov V.A.* Macromol. Chem. Phys., 1997, v. 198, p. 2889.
- 13. Talsi E.P., Semikolenova N.V, Panchenko V.N. e. a. J. Molec. Catal. A: Chem., 1999, v. 139, p. 131.
- 14. *Захаров В.А., Талзи Е.П., Захаров И.И., Бабушкин Д.Э., Семиколенова Н.В.* Кинетика и катализ, 1999, т. 40, № 6, с. 926.
- 15. Panchenko V.N., Semikolenova N.V., Danilova I.G. e. a. J. Molec. Catal. A: Chem., 1999, v. 142, p. 27.
- 16. Zakharov V.A., Panchenko V.N., Semikolenova N.V., Danilova I.G. e. a. Polymer Bull., 1999, v. 43, p. 87.
- 17. Echevskaya L.G., Zakharov V.A., Semikolenova N.V., Mikenas T.B. Polimery, 2001, v. 46, № 1, p. 40.
- 18. Collins S., Kelly W.M., Holden D.A. Macromolecules, 1992, v. 25, p. 1780.
- 19. Sacchi M.C., Zucchi D., Tritto J. e. a. Macromol. Rapid Commun., 1995, v. 16, p. 581.
- 20. Kaminaka M., Soga K. Ibid., 1991, v. 12, p. 367.
- 21. Soga K., Shiono T. Prog. Polym. Sci., 1997, v. 22, p. 1503.