ГАЗОСЕЛЕКТИВНЫЕ МЕМБРАНЫ И МЕМБРАННЫЕ КАТАЛИЗАТОРЫ НА ОСНОВЕ ПЛЕНОК ПОРИСТОГО ОКСИДА АЛЮМИНИЯ

<u>Петухов Д. И.</u>^{а,1}, Булдаков Д. А.^а, Азиев Р. В.^а, Елисеев А. А.^а

Факультет наук о материалах МГУ имени М.В. Ломоносова¹ - <u>petukhov@inorg.chem.msu.ru</u>

Одно из важнейших направлений современной технологии связано с проблемами селективного разделения компонентов газовых и жидкостных смесей, а также разработки методов их очистки от примесей (фильтрации). Керамические мембраны обладают рядом преимуществ перед полимерными: высокой термической стабильностью (могут применяться вплоть до температуры 800°С), химической инертностью, высокой механической прочностью, а значит, и бо́льшим сроком службы. Кроме того, на керамическую мембрану можно легко нанести каталитически активные частицы и создать, таким образом, мембранный катализатор.

В настоящее время существуют различные способы получения пористых керамических мембран: керамический метод (спекание порошков), золь-гель технология, осаждение из газовой фазы, а также различные сочетания этих методов. Однако, существующие сегодня технологии получения керамических мембран не позволяют целенаправленно создавать мембраны с заданным размерам пор и их узким распределением по размерам. Кроме того, как правило, мембраны, получаемые традиционными методами, содержат трехмерную структуру открытых пор, обладающих большой извилистостью, что не позволяет получать высокие значения проницаемости. С данной точки зрения перспективным материалом для создания газоселективных мембран является анодный оксид алюминия, который обладает

рядом уникальных свойств, как то, узкое распределение пор по размерам, малая извилистость пор, а также возможность варьирования параметров пористой структуры в зависимости от условий получения Целью данной работы было изучение возможности применения пленок анодного оксида алюминия в качестве газоселективных мембран и основы для создания мембранных катализаторов.

Рис. 1. Микрофотография мембраны анодного оксида алюминия а) верхняя сторона; б) скол

В данной работе были синтезированы

мембраны анодного оксида алюминия двумя путями: двухстадийным окислением при напряжении 25 и 40В в 0,3М H₂SO₄ и 0,3М H₂C₂O₄, а также путем одностадийного

окисления алюминия при напряжениях 130-160В в 0,3M $H_2C_2O_4$. Были синтезированы мембраны с диаметром пор в диапазоне от 17 до 190 нм и толщиной от 60 до 200 мкм. Для улучшения селективности газоразделения смесей содержащих водород на мембрану из анодного оксида алюминия методом термического напыления была нанесена тонкая пленка палладия.

Так же в рамках данной работы были

синтезированы

Рис. 2. Проницаемость мембраны с толщиной 135 мкм и средним диаметром пор 115 нм по различным газам при температуре 25°С.

катализаторы Pt/aнодный- Al_2O_3 путем пропитки мембраны раствором H_2PtCl_6 и последующим восстановлением платины в атмосфере водорода при 300°C в течение часа.

мембранные

На рис. 1 показана микрофотография мембраны анодного оксида алюминия, хорошо видно, что распределение пор по размерам достаточно узкое и поры имеют малую извилистость. Результаты измерения проницаемости индивидуальных газов показывают (рис. 2), проницаемость мембраны линейно зависит от молекулярной массы протекающего газа, что свидетельствует о том, что основным механизмом протекания газа через мембраны является кнудсеновская диффузия. при этом поток газа через мембрану является достаточно большим (до 170 м³/(м²·атм·час) по азоту при температуре 25°C). Установлено, что проницаемость мембран возрастает с увеличением диаметра пор, и уменьшением

Рис. 3. Зависимость проницаемости и селективности мембран Pd/Al₂O₃ с толщиной слоя палладия а) 150 нм; б) 250 нм толщины мембраны.

Термическое нанесение палладия позволяет значительно увеличить фактор разделения мембраны по отношению к водороду. На рис. 3 представлены графики зависимости проницаемости мембран с напыленным слоем палладия толщиной 150 и 250 нм от корня из обратной температуры. Перенос газа через ассиметричную палладиевую мембрану

осуществляется по двум механизмам – механизм растворения-диффузии водорода в палладии и механизм диффузии Кнудсена. С увеличением температуры происходит увеличение фактора разделения, что может быть объяснено увеличением вклада механизма растворения-диффузии водорода через палладий. Максимальный фактор разделения достигнутый в рамках данной работы равен 27 при проницаемости мембраны по водороду

Рис 4. (а), (б) Микрофотография наночастиц платины на стенках мембраны анодного оксида алюминия; (в) микрофотография единичной наночастицы платины (на вставке приведен Фурье образ изображения)

Рис. 5. Активность мембранного катализатора Pt/анодный-Al₂O₃ с диаметром пор 37 нм

Микрофотография частиц платины на стенках пор мембраны показана на рис. 4. Средний размер частиц платины составляет 4 нм. Активность мембранных катализаторов была исследована на модельной реакции гидрирования Установлено, пропилена. реакция гидрирования пропилена на мембранном катализаторе протекает с полной конверсией при температурах выше 60°С (рис. 5).