

Основные подходы к решению задач по химии олимпиад высокого уровня

Долженко Владимир Дмитриевич,

доцент кафедры неорганической химии химического факультета МГУ имени М.В. Ломоносова

Цели ВсОШ

Порядок проведения всероссийской олимпиады школьников:

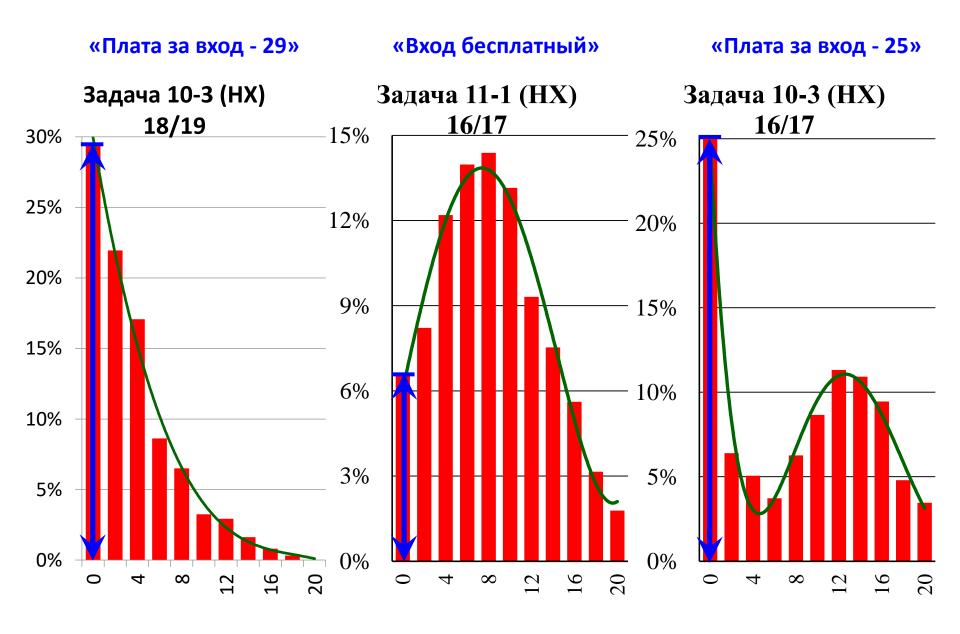
Олимпиада проводится в целях выявления и развития у обучающихся творческих способностей и интереса к научной деятельности, пропаганды научных знаний, отбора лиц, проявивших выдающиеся способности в составы сборных команд Российской Федерации для участия в международных олимпиадах по общеобразовательным предметам.

Всероссийская Олимпиада Школьников по химии

Всемирная олимпиада – 4 человека

Заключительный этап ~250 человек

~ 5%


Региональный этап ~5200 человек

~ 6%

Муниципальный этап ~92000 человек

~ 18%

Школьный этап (~500 000 участников)

Что такое плата за вход?

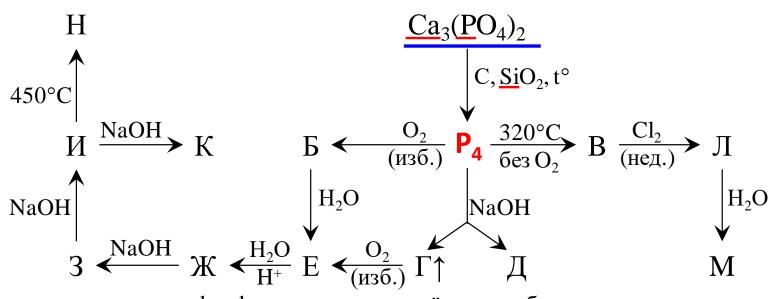
Задача 9-1 (НХ) РЭ 17/18

Венская известь образуется при прокаливании природного минерала X, причем из 1 кг X может быть получено 521.7 г извести. Если известь сильно и долго прокалить, то она бурно реагирует с водой, увеличиваясь в объеме и образуя 619.5 г белого кристаллического продукта. При растворении этого продукта в избытке соляной кислоты получается бесцветный раствор, из которого добавлением избытка насыщенного сульфата натрия может быть теоретически выделено 934.8 г белого кристаллического вещества Y нерастворимого в кислотах. Навеска этого вещества массой 10 г при нагревании до 350°С теряет 2.093 г.

Для начала решения задачи необходимо найти зацепки, которые позволят определить химические вещества с которыми происходдят описываемые превращения.

- 1) Качественная информация
- 2) Количественные данные (не все числа одинаково полезны)

Что такое плата за вход?

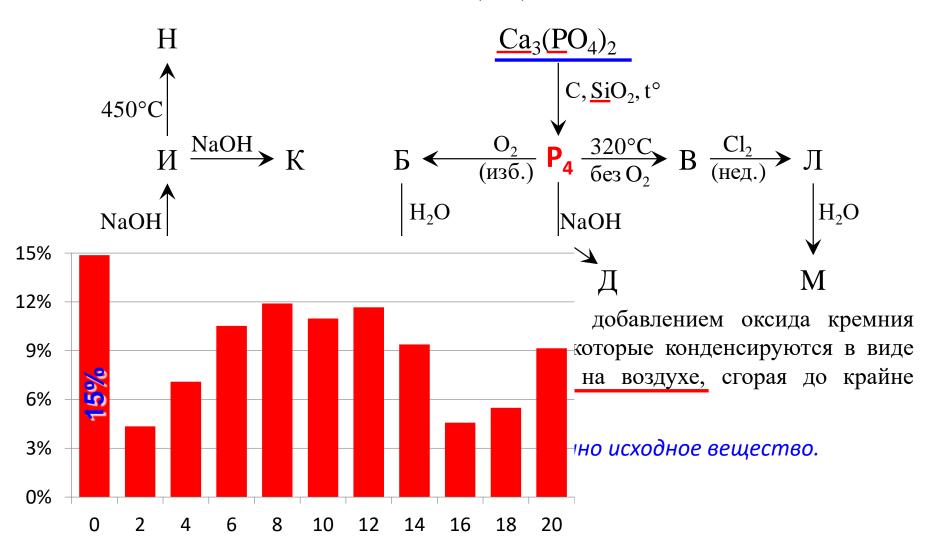

Задача 9-1 (НХ) РЭ 17/18

Венская известь образуется при прокаливании природного минерала **X**, причем из **1** кг **X** может быть получено **521.7** г извести. Если известь сильно и долго прокалить, то она бурно реагирует с водой, увеличиваясь в объеме и образуя **619.5** г белого кристаллического продукта. При растворении этого продукта в избытке соляной кислоты получается бесцветный раствор, из которого добавлением избытка насыщенного сульфата натрия может быть теоретически выделено **934.8** г белого кристаллического вещества **Y** нерастворимого в кислотах. Навеска этого вещества массой **10** г при нагревании до 350°C теряет **2.093** г.

Что такое плата за вход?

Задача 9-2 (HX) РЭ 17/18

При восстановлении фосфата кальция углём с добавлением оксида кремния отгоняют пары простого вещества A (**р-ция** I), которые конденсируются в виде желтоватых кристаллов. А самовоспламеняется на воздухе, сгорая до крайне гигроскопичного Б (р-ция 2).


Плата за вход символическая, т.к. в цепочке указано исходное вещество.

1) Качественная информация A = Ca, Si или P_A

$$A = Ca$$
, Si или P_A

Что такое плата за вход?

Задача 9-2 (НХ) РЭ 17/18

NaOH

1. «Цепочка»

В-во

 X_1

 X_2

 X_3

X₇

- а) Схема превращений + минимум описания
- b) Однородная количественная информация

с) Вопросы: вещества и уравнения реакций

Задача 9-1 (НХ) ЗЭ 15/16

На предлагаемой Вашему вниманию схеме представлены превращения веществ $X_1 - X_9$, содержащих в своем составе один и тот же элемент. В таблице приведены некоторые свойства веществ.

Окраска вещества

при н.у.

Не окрашено

Не окрашено

Не окрашено

Синяя

и X_8 I_{N_0} I_{N_0} I_{N_0} I_{N_0} I_{N_0}	HClero A	X ₆ 200°C	X5
а при растворении в воде	T _{пл.} , °C	Т _{кип.} , °С	
Нейтральная	-210	-196	
Щелочная	-78	-33	
Нейтральная	-164	-152	

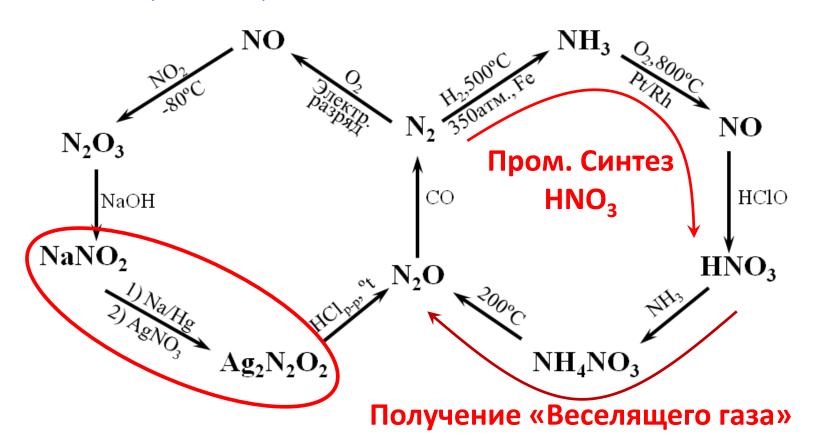
-102

4,5

HC1O

- 1. Установите формулы и названия веществ **X₁ X₉.**
- 2. Напишите уравнения представленных на схеме реакций.

Среда пр


Кислая

1. «Цепочка»

- а) Схема превращений + минимум описания
- b) Вопросы: вещества и уравнения реакций

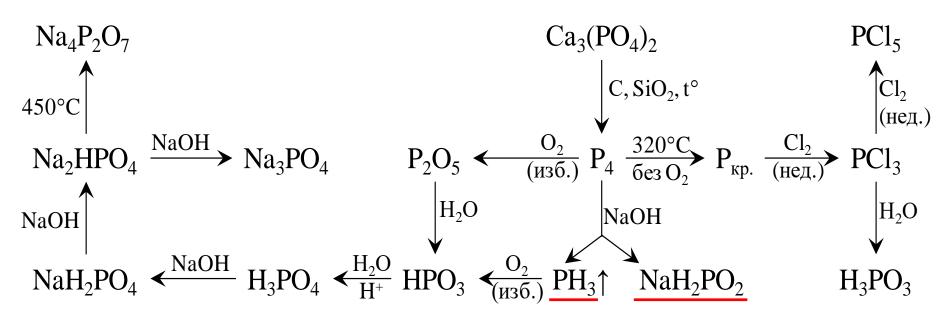
Задача 9-1 (НХ) ЗЭ 15/16

Для решения необходимы знания условий проведения реакций, чтобы угадать элемент есть «школьные» реакции и редкие экзотические соединения.

2. «Сказка»

- а) Подробное описание условий реакций + Схема превращений
- b) Избыточная качественная информация
- с) Разнородные количественные данные
- d) Вопросы: вещества, уравнения реакций + качественные вопросы

Задача 9-2 (НХ) РЭ 17/18


При восстановлении фосфата кальция углём с добавлением оксида кремния отгоняют пары простого вещества **A**, которые конденсируются в виде желтоватых кристаллов. Вещество **A** самовоспламеняется на воздухе, сгорая до крайне гигроскопичного **Б**. При нагревании **A** без доступа воздуха образуется красное вещество **B**. Кипячение **A** с концентрированным раствором гидроксида натрия приводит к диспропорционированию с выделением газа **Г** и образованию в растворе соли **Д**. Соль **Д** является сильным восстановителем. Из 0.25 г **A** может быть получено 45.2 мл (н.у.) **Г**. Из водного раствора соль **Д** выделяется в виде кристаллогидрата, содержащего 16.98 % воды.

Как правило количественные данные позволяют сделать вывод о качественном составе

2. «Сказка»

- а) Подробное описание условий реакций + Схема превращений
- b) Избыточная качественная информация
- с) Разнородные количественные данные
- d) Вопросы: вещества, уравнения реакций + качественные вопросы

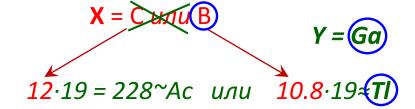
Задача 9-2 (HX) РЭ 17/18

Как правило количественные данные позволяют сделать вывод о качественном составе

2. «Сказка»

- а) Подробное описание условий реакций + Схема превращений
- b) Избыточная качественная информация
- с) Разнородные количественные данные
- d) Вопросы: вещества, уравнения реакций + качественные вопросы

Предложите структурные формулы кислот **Ж**, **M**, а также кислот, соответствующих солям **Д** и **H**. Для каждой кислоты определите и обоснуйте основность.


3. «О соседях»

- а) Иллюстрация сходства и/или различий элементов
- b) Закономерности изменения свойств в группах и периодах
- с) Вопросы: вещества, уравнения реакций + качественные вопросы
- d) Часто в форме «сказки» иногда со схемой превращений

Задача 11-1 (HX) РЭ 18/19

Элементы **X**, **Y** и **Z** относятся к одной группе таблицы Д.И. Менделеева. Самый легкий из них **X** имеет несколько аллотропных модификаций, плавится при очень высокой температуре, в кристаллическом виде почти ни с чем не реагирует, в аморфном виде реагирует с азотной кислотой при нагревании. Элемент **Z** проявляет металлические свойства, простое вещество имеет низкую температуру плавления. Молярные массы **X** и **Z** отличаются почти в 19 раз, а **Y** и **Z** примерно в 3 раза.

1) Качественная информация

2) Количественные данные

3. «О соседях»

- а) Иллюстрация сходства и/или различий элементов
- b) Закономерности изменения свойств в группах и периодах
- с) Вопросы: вещества, уравнения реакций + качественные вопросы
- d) Часто в форме «сказки» иногда со схемой превращений

Задача 11-1 (НХ) РЭ 18/19

Вопросы:

- 3) В чем отличие поведения нитрата **TI** в высшей степени окисления от нитрата **Ga**? В качестве иллюстрации приведите пример, химической реакции, которая могла бы протекать только для нитрата **TI**.
- 4) Какие свойства проявляет гидратированный оксид **Ga** в высшей степени окисления в водном растворе в отличие от аналогичных соединений **B** и **TI**? Запишите уравнения реакций гидратированного оксида **Ga**, иллюстрирующие это свойство.

Окислительно-восстановительные свойства

Кислотно-основные свойства

3. «О соседях»

Найдите три идущих подряд в периодической системе химических элемента **X**, **Y** и **Z** (**X** – с наименьшим порядковым номером, **Z** – с наибольшим, например, **X** – водород, **Y** – гелий, **Z** – литий), отвечающих указанному условию. В решении для каждого из пунктов 1–4 укажите по одной тройке элементов. **В** каждом пункте тройки разные.

- 1. Может протекать реакция $\mathbf{XZ}_{(ras)} + \mathbf{YZ}_{2(ras)} = \mathbf{XZ}_{2(ras)} + \mathbf{YZ}_{(ras)}$. Напишите уравнение реакции.
- 2. **X** образует только один оксид белого цвета (**A**), **Y** образует фиолетовый (**B**) и белый (**C**) оксиды, последний содержит 40 % кислорода по массе, **Z** образует несколько оксидов различного состава чёрного цвета и оранжевый оксид (**D**).

Запишите формулы оксидов A - D. Состав C подтвердите расчетом.

- 3. Простые вещества, образованные **X**, **Y** и **Z** были взяты в мольном соотношении 1 : 1 : 1, при этом их массы составили 1,00 г, 2,07 г и 0,57 г соответственно. Приведите по одному уравнению реакции между простыми веществами образованными **X** и **Z**, а также **Y** и **Z**.
- 4. **X** в большинстве своих соединений проявляет степень окисления +3, в редких случаях он способен проявлять степень окисления +2, степень окисления +3, а -3 в основном проявляет степень окисления +4 и очень редко +2 и +3.

3. «О соседях»

1. Может протекать реакция $\mathbf{XZ}_{(\mathbf{ra3})} + \mathbf{YZ}_{2(\mathbf{ra3})} = \mathbf{XZ}_{2(\mathbf{ra3})} + \mathbf{YZ}_{(\mathbf{ra3})}$. Напишите уравнение реакции.

$$Bonpoc$$
 на химическую эрудицию: $CO + NO_2 = CO_2 + NO$

2. **X** образует только один оксид белого цвета (**A**), **Y** образует фиолетовый (**B**) и белый (**C**) оксиды, последний содержит 40 % кислорода по массе, **Z** образует несколько оксидов различного состава чёрного цвета и оранжевый оксид (**D**).

Запишите формулы оксидов A - D. Состав C подтвердите расчетом.

$$Y_2O_n$$
: $2M_Y + 16n = 16n / 0.4$;
 $M_Y = 12n$. => M_8O , Cl_2O_3 , TiO_2

Na	22,98976928 3s' НАТРИЙ	Mg	24,305 3s ⁷ МАГНИЙ	Al	6,9815385 Зв'3р' Юминий	Si	28,085 3s ² 3p ² КРЕМНИЙ	3 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1 1	30,973762 3s ³ 3p ³ ФОСФОР	100	32,06 3s [†] 3p [*] CEPA	Cl	35,452 3s ² 3p ² ХЛОР	Ar	39,948 3s ² 3р ⁴ АРГОН
K	39,0983 4s¹ КАЛИЙ	Ca	1000	44,95591 3d'4s ² СКАНДИЙ	Sc	47,867 3d ¹ 4s ¹ ТИТАН	Ti	50,9415 3d'4s' ВАНАДИ	V	51,996 3d ⁴ 4s ¹ XPOM	Cr	54,938044 3d°4s° МАРГАНЕ	Mn	55,845 3d ⁴ 4s ² ЖЕЛЕЗО	Fe

3. «О соседях»

1. Может протекать реакция $\mathbf{XZ}_{(\mathbf{ra3})} + \mathbf{YZ}_{2(\mathbf{ra3})} = \mathbf{XZ}_{2(\mathbf{ra3})} + \mathbf{YZ}_{(\mathbf{ra3})}$. Напишите уравнение реакции.

$$Bonpoc$$
 на химическую эрудицию: $CO + NO_2 = CO_2 + NO$

/ 4 балла

2. **X** образует только один оксид белого цвета (**A**), **Y** образует фиолетовый (**B**) и белый (**C**) оксиды, последний содержит 40 % кислорода по массе, **Z** образует несколько оксидов различного состава чёрного цвета и оранжевый оксид (**D**).

Запишите формулы оксидов A - D. Состав C подтвердите расчетом.

$$Y_2O_n$$
: $2M_Y + 16n = 16n / 0.4$; $M_Y = 12n$. => M_8O , Cl_2O_3 , TiO_2

\mathbf{A}	В	C	D
Sc_2O_3	Ti_2O_3	TiO_2	V_2O_5
белый	фиолетовый	белый	оранжевый

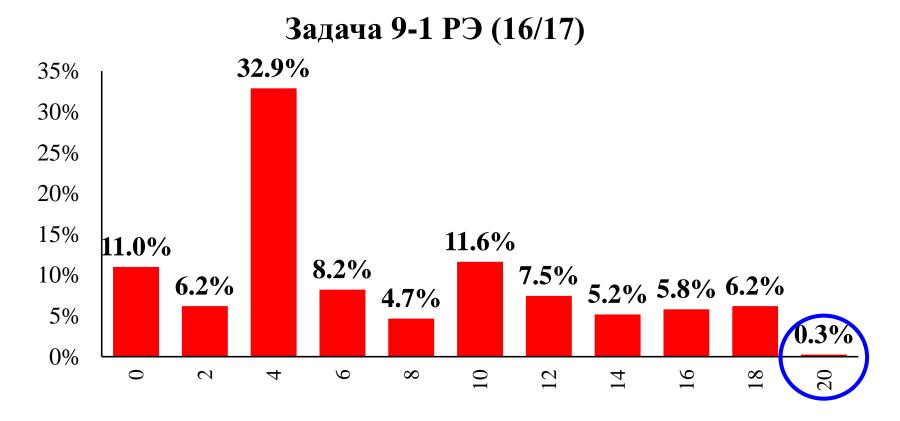
3. «О соседях»

3. Простые вещества, образованные \mathbf{X} , \mathbf{Y} и \mathbf{Z} были взяты в мольном соотношении 1:1:1, при этом их массы составили 1,00 г, 2,07 г и 0,57 г соответственно. Приведите по одному уравнению реакции между простыми веществами образованными \mathbf{X} и \mathbf{Z} , а также \mathbf{Y} и \mathbf{Z} .

Предполагая близость атомных масс X, Y и Z простые вещества имеют состав: X_2 , Y_4 , Z или X_4 , Y_8 , Z_2

			7 0	2					ŀ	$_4$ S_8	3 Cl	$^{1}2$			
Na	22,98976928 Зs¹ НАТРИЙ	Mg	24,305 3s ² МАГНИЙ	Al	26,9815385 3s ² 3р ¹ ТЮМИНИЙ	Si	28,085 3s ² 3p ² КРЕМНИЙ	P	30,973762 Зв ¹ Зр ¹ ФОСФОР	S	32,06 3s ² 3p ⁴ CEPA	Cl	35,452 3s ² 3р ¹ ХЛОР	Ar	39,948 3s ² 3p
K	39,0983 4s¹ КАЛИЙ	Ca		44,95591 3d'4s' СКАНДИЙ	Sc	47,867 3d ⁴ 4s ⁴ ТИТАН	Ti	50,9415 3d ³ 4s ³ ВАНАДИЙ	V 23	51,996 3d*4s' XPOM	Cr Cr	54,938044 3d'4s' МАРГАНЕ	Mn ²⁵	55,845 3d'4s' ЖЕЛЕЗО	Fe

$$4Cl_2 + S_8 = 4S_2Cl_2$$
 $P_4 + 10Cl_2 = 4PCl_5$ или $8Cl_2 + S_8 = 8SCl_2$ $P_4 + 6Cl_2 = 4PCl_3$


3. «О соседях»

4. **X** в большинстве своих соединений проявляет степень окисления +3, в редких случаях он способен проявлять степень окисления +2, степень окисления -10 в соединениях только +3, а -12 в основном проявляет степень окисления +44 и очень редко +2 и +3.

-	A	I B	3		Пер			систем Ленделе		менто	В		A	VII	В	A	VIII 4,0026		
1	H	1s ВОДОРОД		II B	A	III B	A	IV B	A	V B	A	VI B	(H))		He	1s ³ ГЕЛИЙ	Относительна атомная масса	
2	Li	6,9- 2s литий	Be	9,0121831 2s БЕРИЛЛИЙ	B	10,81 2s'2р' БОР	C	12,011 2s ¹ 2p ² УГЛЕРОД		14,007 2s ² 2p ³ A3OT	0	15,997 2s ² 2p ⁴ кислород	F		84032 2s'2p' ФТОР	Ne	20,1797 2s ¹ 2p ⁴ HEOH	51,996 3d*4s' XPOM	Ст симво
3	Na	22,98976921 Зв НАТРИЙ	Mg	24,305 Зв МАГНИЙ	Al	26,9815385 3s²3р¹ АЛЮМИНИЙ	Si	28,085 3s ² 3р ¹ КРЕМНИЙ	P P	30,973762 3s ² 3р ² ФОСФОР	S	32,06 3s ² 3p ⁴ CEPA	Cl	1	15,452 3s'3p" ХЛОР	Ar	39,948 3s ² 3p ⁴ APTOH	Название элемента	Сокращенная электронная конфигурация
4	K	39,098: 4s КАЛИЙ	Ca	40,078 4s КАЛЬЦИЙ		Sc	47,867 3d ² 4s ² ТИТАН	Ti	50,9415 3d'4s' ВАНАДИ	V V	51,996 3d*4s* XPOM	Cr	54,938 3d*4s* MAPFA	M	25 [n	55,845 3d ⁴ 4s ¹ ЖЕЛЕЗО	Fe	58,933194 3d'4s' КОБАЛЬТ СО	58,6934 3d'4s' N
_	63,546 3d [™] 4s [™]	Cu	3d ¹⁴ s ¹ Цинк	Zn	Ga	69,723 4s ¹ 4р ¹ ГАЛЛИЙ	Ge	72,63 4s ¹ 4p ¹ ГЕРМАНИЙ	As	74,921595 4s ² 4p ² Мышьяк	Se	78,971 4s'4p' СЕЛЕН	Br		79,904 4s'4p' 5POM	Kr	83,798 4s ² 4р ⁴ КРИПТОН	1 9 2	
5	Rb	85,4676 5s РУБИДИЙ	Sr	87,62 5s СТРОНЦИЙ	1	Y	91,224 4d ³ 5s ³ ЦИРКО	Zr	92,90637 4d ⁴ 5s ⁴ НИОБИЙ	Nb	95,95 4d°5s' МОЛИЕ	мо бден Мо	[98] 4d'5s' TEXHE	ций]	Гс ⁴³	101,07 4d'5s' РУТЕНИЙ	Ru	102,90550 4d'5s' РОДИЙ	106,42 4d"5s* РС
3	107,86 4d**5s* CEPEE	Ag	112,414 4d ¹¹ 5s ¹ КАДМИ	Cd	In	114,818 5s²5p¹ индий	Sn	118,710 5s ² 5p ² ОЛОВО	Sb	121,760 5s'5р' СУРЬМА	Te	127,60 5s ² 5p ² ТЕЛЛУР	53 I		90447 5s'5p' ЙОД	Xe	131,293 5s'5p' KCEHOH		
6	Cs Cs	132,905453 6s ЦЕЗИЙ	Ba	6s	138,905 5d'6s ² ЛАНТА	La*	178,49 5d'6s' ГАФНИ	Hf 19	180,9478 5d'6s' ТАНТАЛ	* Ta	183,84 5d'6s' ВОЛЬФ	W PAM	186,20 5d'6s' РЕНИЙ	F	Re	190,23 5d*6s ² ОСМИЙ	Os	192,217 5d'6s' иридий Ir	195,084 5d'6s' Р
	196,966 5d [™] 6s ¹	Au	200,592 5d"6s" РТУТЬ	Hg		204,38 6s³6p¹ ТАЛЛИЙ	Pb	207,2 6s²6p² СВИНЕЦ	Bi	208,98040 6s ⁴ 6р ⁴ ВИСМУТ		[209] 6s ² 6p ⁴ ПОЛОНИЙ	At		[210] 6s ³ 6p ¹ ACTAT	Rn	[222] 6s ¹ 6р ¹ РАДОН		
7	Fr	[223 7s ФРАНЦИЙ	Ra	[226] 7s РАДИЙ	6d'7s'	AC	[265] 6d ² 7s ² PE3EP	под 104 Кратий	[268] 6d ³ 7s ³ Дубний	Db	[271] 6d*7s*	Sg	[270] 6d ¹ 7s ² 6OPM	_a E	3h	[277] 6d ⁴ 7s ² ХАССИЙ	Hs	[276] 109 6d'7s' Mt МЕЙТНЕРИЙ	[281] 1 6d'7s' D
	[280] 6d*7s* PEHTF	Rg	[285] 6d"7s" KONEPH	Cn Cn	Nh	[284] 7s ¹ 7р ¹ Нихоний	Fl	[289] 7s ¹ 7р ¹ ФЛЕРОВИЙ	Mc N	[288] 7s ¹ 7p ¹ ИОСКОВИЙ	Lv	[293] 7s²7p° ИВЕРМОРИЙ	Ts	ТЕНН	[294] 7s ¹ 7p ⁶ ЕСИН	Og or	[294] 7s²7p° AHECCOH		I =
									* Л	[антан	оидь	ı						E 2 2	
e 4f'5	d'6s' P	140,90766 4f'6s' РАЗЕОДИМ	Nd	44,242 41'6s' Одим	[145 4f 6s POMETU	Sm 4	0,36 1 ^{*6s} Е	151,964 U 4f'6s' ЕВРОПИЙ	Gd 41'5	57,25 5d'6s ² Тb	41'6		1"6s' I	7 164,9 10 ⁴	If "6s'	Er 4	7,259 69 f ''6s' Tn	n 4f '6s' Yb	73.045 N "6s" Lu 41"50 РБИЙ ЛЮТЕ

3. «О соседях»

4. **X** в большинстве своих соединений проявляет степень окисления +3, в редких случаях он способен проявлять степень окисления +2, степень окисления -10 в соединениях только +3, а -12 в основном проявляет степень окисления +44 и очень редко +2 и +3.

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Синтетическая часть:

Юный химик взял в лаборатории белый порошок бинарного соединения **A**, содержащего элемент **X**, растворил в холодной воде (**p-ция 1**). После этого добавил в полученный раствор избыток раствора гидроксида натрия и пропустил через него ток хлора (**p-ция 2**). При этом образовался бесцветный раствор вещества **Б**.

Раствор соли **Б**, в котором содержался также избыток гипохлорита натрия, Юный химик смешал с раствором бледно-розовой соли **В** металла **Y**. При этом получился ярко-красный раствор (**р-ция 3**), при высаливании этиловым спиртом из раствора выпал осадок кристаллогидрата **Г**.

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Синтетическая часть:

A – бинарное соединение.

При взаимодействии **A** с угарным газом образуется простое вещество **3**, которое окрашивает крахмал (I_2).

Кроме 3 образуется газ И, входящий в состав воздуха, с молярной массой

$$M_{\mathbf{H}} = D_{H_2} \cdot M_{H_2} = 21.83 \cdot 2.016 \frac{2}{MOЛb} = 44.01 \frac{2}{MOЛb}$$

 ${\bf M}={\bf CO_2}$. Значит второй элемент в ${\bf A}$ - это оксида иода $({\bf I_2O_x})$:

$$\omega_I = \frac{2 \cdot M_I}{2 \cdot M_I + x \cdot M_O}$$

$$x = \frac{2 \cdot M_I \cdot (1 - \omega_I)}{M_O \cdot \omega_I} = \frac{2 \cdot 126.905 \cdot (1 - 0.7604)}{15.999 \cdot 0.7604} = 5 \qquad \text{=> } A - I_2O_5$$

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Синтетическая часть:

При пропускании хлора через щелочной раствор $\mathbf{I_2O_5}$, йод окисляется до +7. Образуется натриевая соль $\mathbf{Б}$ ($\omega(I)=43.18\%$) кислоты \mathbf{K} , которая образует среднюю соль серебра $\mathbf{\Pi}$ ($\mathrm{Ag_xIO_y}$), ($\omega(I)=16.65\%$).

$$M_{\mathrm{JI}} = 126.905 \frac{2}{MOJIb} / 0.1665 = 762.19 \frac{2}{MOJIb}$$

$$Ag_xIO_y$$
: $126.905 + 107.87 \cdot x + 15.999 \cdot y = 762.19$
 $y = 39.71 - 6.742 \cdot x$

Электронейтральность:

Ag¹⁺_xI⁷⁺O²⁻_y:
$$2y = 7 + x \implies y = 3.5 + 0.5x$$

 $3.5 + 0.5 \cdot x = 39.71 - 6.742 \cdot x$
 $x = 5; y = 6$ $JI - Ag_5IO_6, K - H_5IO_6.$
 $M_E = M_I / \omega = 126.905 \frac{c}{MOAB} / 0.4318 = 293.90 \frac{c}{MOAB}$
 $JI - Ag_5IO_6$
 $JI - Ag_5IO_6$

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Синтетическая часть:

При пропускании хлора через щелочной раствор $\mathbf{I_2O_5}$, йод окисляется до +7. Образуется натриевая соль $\mathbf{Б}$ ($\omega(I)=43.18\%$) кислоты \mathbf{K} , которая образует среднюю соль серебра $\mathbf{\Pi}$ ($\mathrm{Ag_xIO_y}$), ($\omega(I)=16.65\%$).

$$M_{\mathrm{JI}} = 126.905 \frac{2}{MOJIb} / 0.1665 = 762.19 \frac{2}{MOJIb}$$

$$Ag_xIO_y$$
: $126.905 + 107.87 \cdot x + 15.999 \cdot y = 762.19$
 $y = 39.71 - 6.742 \cdot x$

Электронейтральность:

Ag¹⁺_xI⁷⁺O²⁻_y:
$$2y = 7 + x \implies y = 3.5 + 0.5x$$

 $3.5 + 0.5 \cdot x = 39.71 - 6.742 \cdot x$
 $x = 5; y = 6$ $JI - Ag_5IO_6, K - H_5IO_6.$
 $M_E = M_I / \omega = 126.905 \frac{c}{MOAB} / 0.4318 = 293.90 \frac{c}{MOAB}$
 $JI - Ag_5IO_6$
 $JI - Ag_5IO_6$

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Синтетическая часть:

Металл **Y** в природе встречается в виде оксида **M** (ω (**Y**) = 63.20%). Предположим, состав оксида **Y**₂**O**_n, тогда

$$\omega = \frac{2 \cdot M_Y}{2 \cdot M_Y + n \cdot 15.999} \qquad M_Y = \frac{n}{2} \frac{\omega \cdot 15.999}{1 - \omega}$$

n	1	2	3	4	5	6	7	8	
M _Y	13.73	27.46	41.2	54.93	68.66	82.39	96.13	109.86	
				MnO ₂			Mo ₂ O ₇		

$$Y - Mn$$
, $M - MnO_2$

Соль **B** даёт осадок с солями бария, => **B** - это сульфат марганца (II).

$$M_B = M_{Mn} / \omega = 54.938 \frac{2}{MONB} / 0.1984 = 276.91 \frac{2}{MONB}$$

$$B - MnSO_4 \cdot 7H_2O$$
.

4. Химический анализ

Задача Н-3 ЗЭ 16/17

Аналитическая часть:

Для анализа полученного вещества Юный химик нагревал 0.5000 г го при 150°С пока масса не перестала изменяться, масса остатка составила 0.3664 г.

Далее Юный химик пропустил в ток сернистого газа в водный раствор 0.5000г Г. После прекращения реакции он нагрел раствор для удаления избытка сернистого газа из раствора и разделил его на две равные части. К первой он добавил небольшой избыток нитрата серебра. При этом выпал желтоватый осадок Д массой 0.1452 г. А после отделения осадка к фильтрату Юный химик добавил небольшой избыток раствора хлорида бария. Выпавший белый осадок Е он отделил высушил и взвесил, его масса составила 0.6252 г. Вторую часть раствора Юный химик охладил и добавил к ней раствор гидросульфида аммония. При этом образовался осадок розового цвета Ж, содержащий металл Y, который Юный химик отделил и высушил в атмосфере азота при 100°C, масса осадка составила 0.0179 г.

4. Химический анализ

Задача Н-3 ЗЭ 16/17

$$Na_3H_2IO_6 + MnSO_4 \cdot 7H_2O + NaClO(?) + NaOH(?) = \Gamma + ...$$

Аналитическая часть:

- Потеря массы при нагревании Γ до 150°C составила (0.5-0.3664)/0.5=0.2672 = 26.72%
- 2) $\Gamma + SO_2 = продукты восстановления$
 - a) ...+ $Ag^+ = II (AgI) 0.1452 \Gamma$
 - b) ...+ Ba²⁺ = **E** (BaSO₄) 0.6252 Γ
 - c) ...+ $(NH_4)_2S = \mathcal{K}(MnS) 0.0179 \Gamma$

$$\left\{egin{align*} & v_{AgI} = rac{0.1452z}{234.79rac{z}{MOЛЬ}} = 0.618 \text{ммоль} \ & v_{MnS} = rac{0.0179z}{87.00rac{z}{MOЛЬ}} = 0.206 \text{ммоль} \ & v_{BaSO_4} = rac{0.6252z}{233.30^{-2}} = 2.68 \text{ммоль} \ & v_{SO_4^{-2}} = rac{2.68}{0.206} pprox 13 \ & v_{SO_4^{-2}} = rac{2.68}{0.206} \ & v_{SO_4^{-2}} = \frac{2.68}{0.206} \ & v_{SO_4^{-2}} = \frac{2.68}{0.206}$$

$$=> Mn : I = 1 : 3$$

$$v_{BaSO_4} = \frac{0.6252z}{233.39 \frac{z}{MOЛЬ}} = 2.68 MMOЛЬ$$

$$v_{BaSO_4} = \frac{0.6252z}{233.39 \frac{z}{MOЛЬ}} = 2.68 MMOЛЬ$$

$$v_{Mn^{2+}} = \frac{2.68}{0.206} \approx 13$$

$$v_{Mn^{2+}} = \frac{2.68}{0.206} \approx 13$$

$$Mn^{+n} + 3I^{+7} \xrightarrow{+26e} Mn^{+2} + 3I^{-1}$$

4. Химический анализ

Задача Н-3 ЗЭ 16/17

$$Na_3H_2IO_6 + MnSO_4 \cdot 7H_2O + NaClO(?) + NaOH(?) = \Gamma + ...$$

Аналитическая часть:

0.25 г кристаллогидрата Γ содержит 0.206 моль $\mathrm{Mn^{4+}}$

$$M_{\Gamma} = \frac{0.25\varepsilon}{0.206 \cdot 10^{-3} MOAb} \approx 1213 \frac{\varepsilon}{MOAb}$$

Потеря массы при нагревании Γ до 150°C составила $0.2672 \cdot 1213 = 324$ г/моль

$$324 \, \Gamma/_{\text{моль}} = 18 \cdot 18 \, \Gamma/_{\text{моль}}$$
 $\Gamma = \text{Na}_x \text{H}_y \text{Mn(IO}_6)_3 \cdot 18 \text{H}_2 \text{O}$

$$M_{\Gamma} = x \cdot M_{Na} + y \cdot M_{H} + M_{Mn} + 3 \cdot M_{IO_{6}^{5-}} + 18 \cdot M_{H_{2}O} =$$

$$= 22.99x + 1.008y + 54.938 + 3 \cdot 222.90 + 18 \cdot 18.015 = 1213 \frac{2}{MOJh}$$

 $x \approx 7$; y = 4

$$x + y = 11$$
 $22.99x + 1.008 \cdot (11 - x) = 165.092$

$$\Gamma = \text{Na}_7[\text{Mn}(\text{HIO}_6)_2(\text{H}_2\text{IO}_6)] \cdot 18\text{H}_2\text{O}$$
 или $\text{Na}_7\text{H}_4\text{Mn}(\text{IO}_6)_3 \cdot 18\text{H}_2\text{O}$

4. Химический анализ

Задача 9-1 (НХ) РЭ 17/18

Венская известь образуется при прокаливании природного минерала X, причем из 1 кг X может быть получено 521.7 г извести. Если известь сильно и долго прокалить, то она бурно реагирует с водой, увеличиваясь в объеме и образуя 619.5 г белого кристаллического продукта. При растворении этого продукта в избытке соляной кислоты получается бесцветный раствор, из которого добавлением избытка насыщенного сульфата натрия может быть теоретически выделено 934.8 г белого кристаллического вещества Y нерастворимого в кислотах. Навеска этого вещества массой 10 г при нагревании до 350°С теряет 2.093 г. => Y = CaSO₄·2H₂O

Вопросы:

- 1) Определите состав венской извести в массовых процентах, если известно, что она окрашивает пламя в кирпично-красный цвет
- 2) Найдите формулу минерала X и вещества Y. Приведите тривиальные названия этих веществ
- 3) Запишите уравнение реакции взаимодействия \mathbf{X} с соляной кислолой. Рассчитайте минимальный объем 20%-ной соляной кислоты (плотность 1.1 г/мл), необходимой для перевода в раствор $\mathbf{1}$ г минерала \mathbf{X} .
- 4) На сколько увеличится масса венской извести при её обработке водой без предварительного сильного нагревания.

4. Химический анализ

Венская известь образуется при прокаливания природного минерала X, причем из 1 кг X может быть получено 521.7 г извести. Если известь сильно и долго прокалить, то она бурно реагирует с водой, увеличиваясь в объеме и образуя 619.5 г белого кристаллического продукта. При растворении этого продукта в избытке соляной кислоты получается бесцветный раствор, из которого добавлением избытка насыщенного сульфата натрия может быть теоретически выделено 934.8 г белого кристаллического вещества Y нерастворимого в кислотах. Навеска этого вещества массой 10 г при нагревании до 350°C теряет 2.093 г. => Y = CaSO₄·2H₂O

Вопросы:

- 1) Определите состав венской извести в массовых процентах, если известно, что она окрашивает пламя в кирпично-красный цвет
- 2) Найдите формулу минерала X и вещества Y. Приведите тривиальные названия этих веществ
- 3) Запишите уравнение реакции взаимодействия \mathbf{X} с соляной кислолой. Рассчитайте минимальный объем 20%-ной соляной кислоты (плотность 1.1 г/мл), необходимой для перевода в раствор $\mathbf{1}$ г минерала \mathbf{X} .
- 4) На сколько увеличится масса венской извести при её обработке водой без предварительного сильного нагревания.

5. Вычислительная задача ≈ задача по физической химии

Задача 10-6 РЭ 17/18 Криоскопия

Один из известных методов определения молярной массы веществ — измерение понижения температуры плавления раствора вещества по сравнению с температурой плавления чистого растворителя. Этот метод называется криоскопией.

Если температура плавления чистого растворителя равна T, а температура плавления раствора недиссоциирующего вещества в нем равна T_l , то понижение температуры плавления можно найти по формуле:

$$\Delta T = T - T_1 = K_f \cdot m \tag{1},$$

где m — моляльность раствора (количество моль растворенного вещества в 1 кг растворителя), K_f — криоскопическая константа, которая является характеристикой данного растворителя. Для воды K_f = 1.86 К·кг/моль.

Интересно, что величина ΔT для идеальных растворов не зависит от природы растворенных частиц, а зависит только от их концентрации. Поэтому если вещество диссоциирует в растворе на ионы, то формула (1) остаётся справедливой, с тем лишь уточнением, что m — суммарное количество моль частиц (в том числе ионов, образовавшихся при диссоциации) на 1 кг растворителя.

Вещества A_1 и B_1 молекулярного строения, имеющие сходные структурные формулы и отличающиеся лишь одним атомом, были получены нагреванием соответственно солей A_2 и B_2 . При этом массы твёрдой фазы в ходе обоих превращений не ...

5. Вычислительная задача ≈ задача по физической химии

Задача 10-6 РЭ 17/18 Криоскопия

Один из известных методов определения молярной массы веществ — измерение понижения температуры плавления раствора вещества по сравнению с температурой плавления чистого растворителя. Этот метод называется криоскопией.

Если температура плавления чистого растворителя равна T, а температура плавления раствора недиссоциирующего вещества в нем равна T_l , то понижение температуры плавления можно найти по формуле:

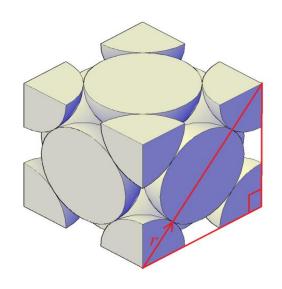
$$\Delta T = T - T_1 = K_f \cdot m \tag{1},$$

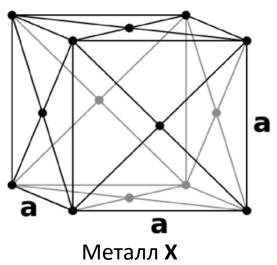
1.	Моляльность растворов A_1 и B_1 – по 1 баллу Подстановка	6 баллов											
	Количества A ₁ и Б ₁ в растворе – по 1 баллу чисел												
	Молярные массы веществ A_1 и B_1 – по 1 баллу.												
2.	Формулы веществ A_1 и B_1 — по 2 балла	4 балла											
3.	Формулы солей A ₂ и Б ₂ – по 2 балла	4 балла											
4.	Верное объяснение (увеличение числа частиц из-за гидролиза)	2 балла											
	Выбор раствора с меньшей температурой плавления	2 балла											
5.	Температура плавления раствора цианата аммония	2 балла											
	итого:	20 баллов											
$\mathbf{A_2}$	и \mathbf{F}_2 . При этом массы твёрдой фазы в ходе обоих превращен	ний не											

5. Вычислительная задача ≈ задача по физической химии

Задача 10-6 РЭ 17/18

					مردد و	,00 _00			_,,_					
пон	Один из и: 10-10-10-10-10-10-10-10-10-10-10-10-10-1												измерение мпературой	
paca	и темпер твора не, вления м	30.09	% —		2	6% 			получ	авили нили в езулы	ерн			плавления емпературы
1.	Моляль Количе Молярь	0.09		2	4	6	8	10	12	14 1	6	18	20	6 баллов
2.	Формулі	ы вег	цеств л	A ₁ и Б ₁ -	- по 2 б	<u>.</u> балл	ıa		•					4 балла
3.	Формулі	ы сол	іей А₂	и Б ₂ – п	о 2 бал	пла								4 балла
4.	Верное	объя	снени	е (увели	чение	чис	ла ча	стиц	из-за	гидрол	иза)		2 балла
	Выбор р	аство	ора с л	иеньшеї	й темп	ерат	гурой	і́ пла	вления	1				2 балла
5.	Темпера	тура	плавл	ения ра	створа	а циа	аната	амм	пония					2 балла
												ИТО	ГО:	20 баллов
$\mathbf{A_2}$	и Б ₂ . I	Іри	ЭТОМ	массы	твёр,	дой	фаз	Ы В	ходе	обои	ХΓ	ревра	ащен	ний не


Расположение в ячейке	Описание	Кол-во	Доля в ячейке	
	В вершинах	8	1/8	1
	На рёбрах			3
	На гранях			3
	В центре			1
	Внутри	4	1	4

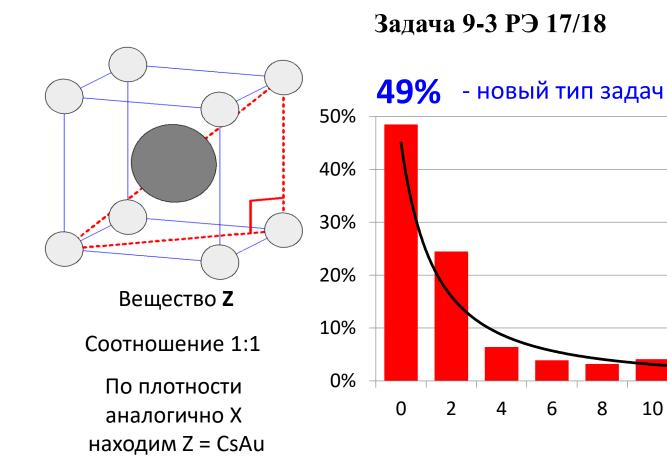

Расположение в ячейке	Описание	Кол-во	Доля в ячейке	
	В вершинах	8	1/8	1
	На рёбрах	12	1/4	3
	На гранях			3
	В центре			1
	Внутри			4

Располож ячей	Описание		
	В вершинах		,
	На рёбрах		
	На гранях	6	
	В центре	1	
	Внутри	4	

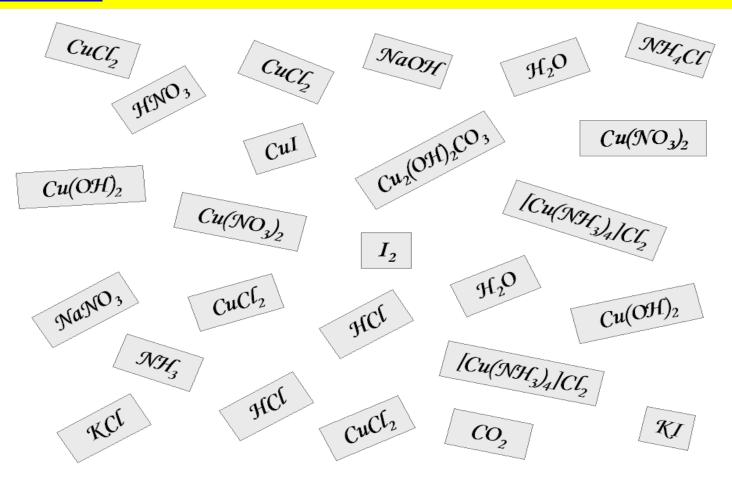
Расположение в ячейке	Описание	Кол-во	Доля в ячейке	Принадлежит ячейке
	В центре	1	1	1
	Внутри	4	1	4

6. Структурная

Задача 9-3 РЭ 17/18

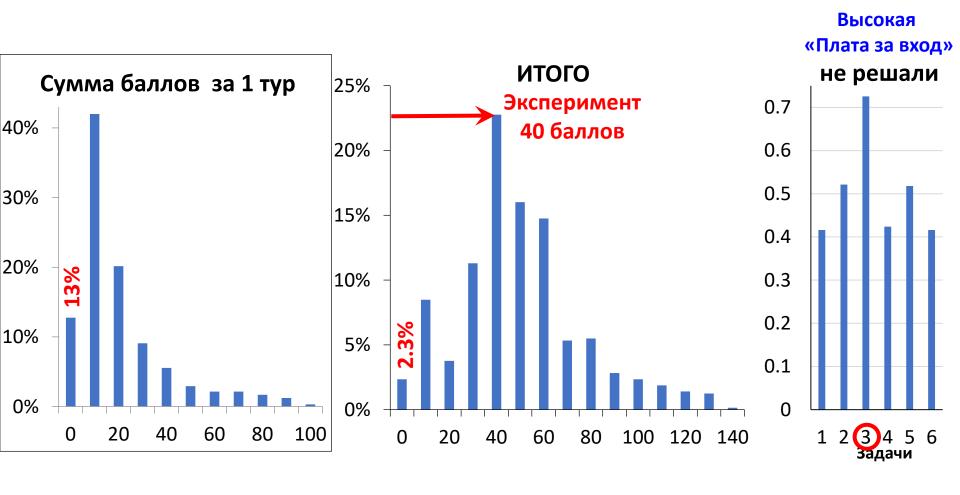

$$\rho = \frac{m}{M} = \frac{4M_X}{N_A \boldsymbol{a}^2} =$$

$$= \frac{4M_X}{6.02 \cdot 10^{23} \frac{1}{\text{моль}} \cdot (4.0781 \cdot 10^{-8} \text{см})^3} =$$

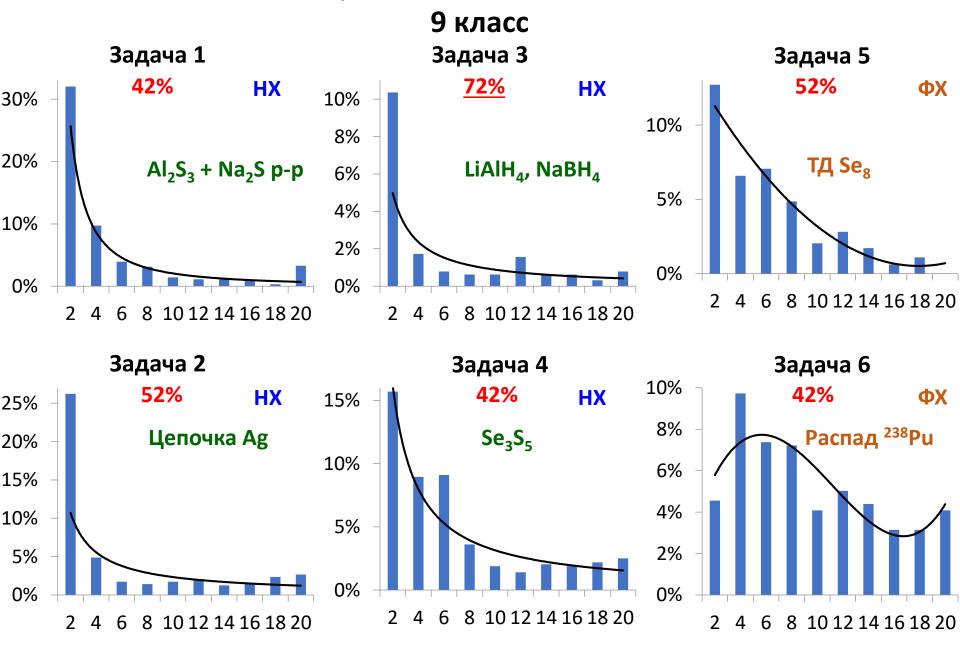

$$= 0.09797 M_X = 19.30 \frac{\Gamma}{\text{см}^3}$$

$$\mathbf{X} - 30\text{лото}$$

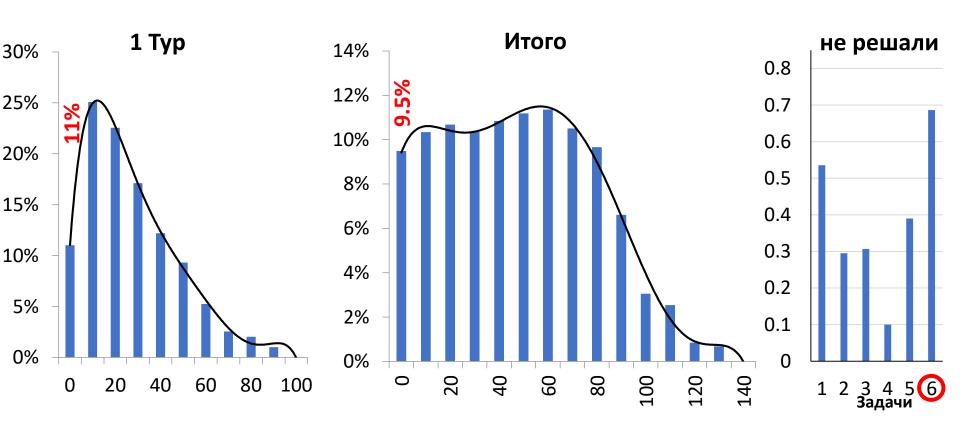
$$r(X) = \frac{1}{4} \alpha \sqrt{2} = \frac{\sqrt{2}}{4} 4.0781 \text{Å} = 1.442 \text{Å}$$

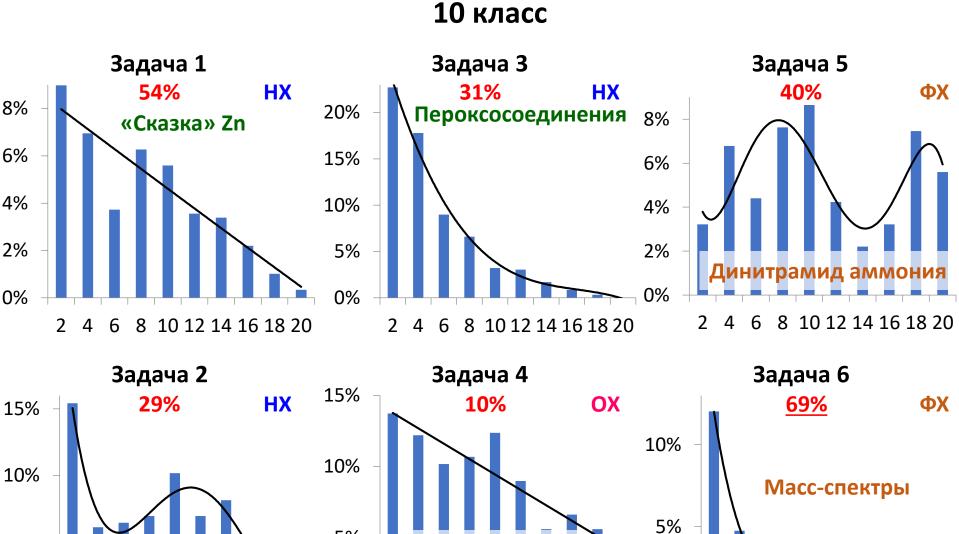


7. Головоломка



Стандартного подхода к решению таких задач не бывает [©]


Статистика регионального этапа 18/19 **9 класс (650 человек)**


Статистика регионального этапа 18/19

Статистика регионального этапа 18/19 **10 класс (615 человек)**

Статистика регионального этапа 18/19

правило

арковникова

8 10 12 14 16 18 20

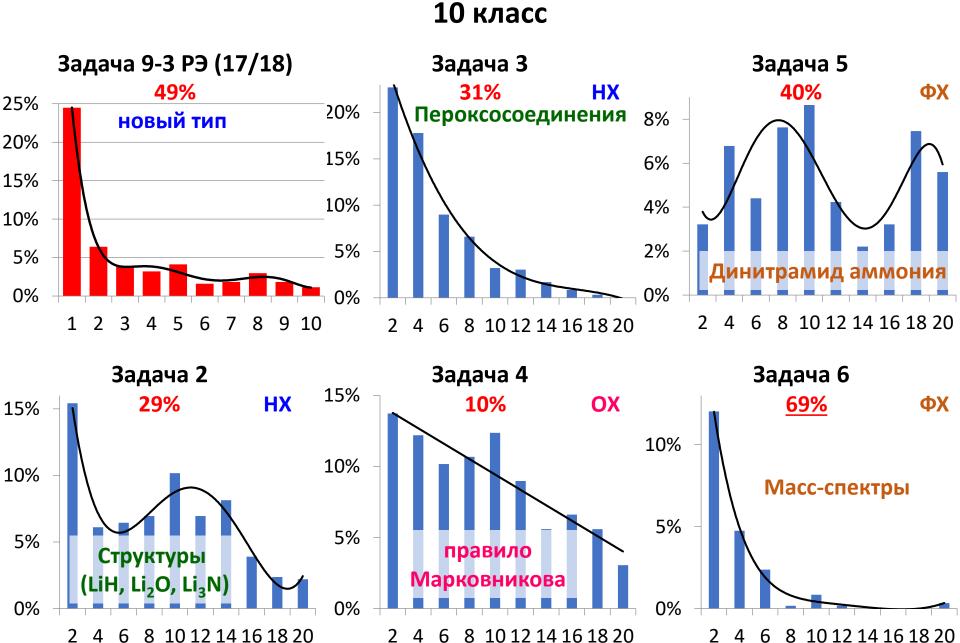
0%

10 12 14 16 18 20

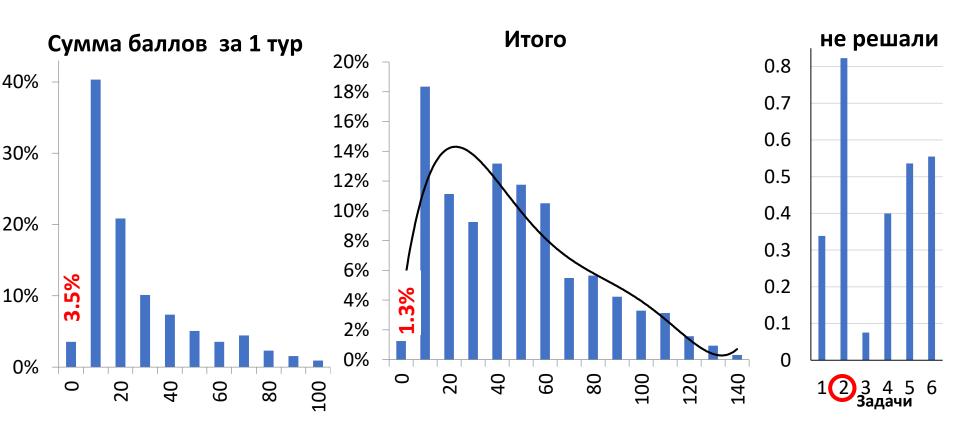
5%

0%

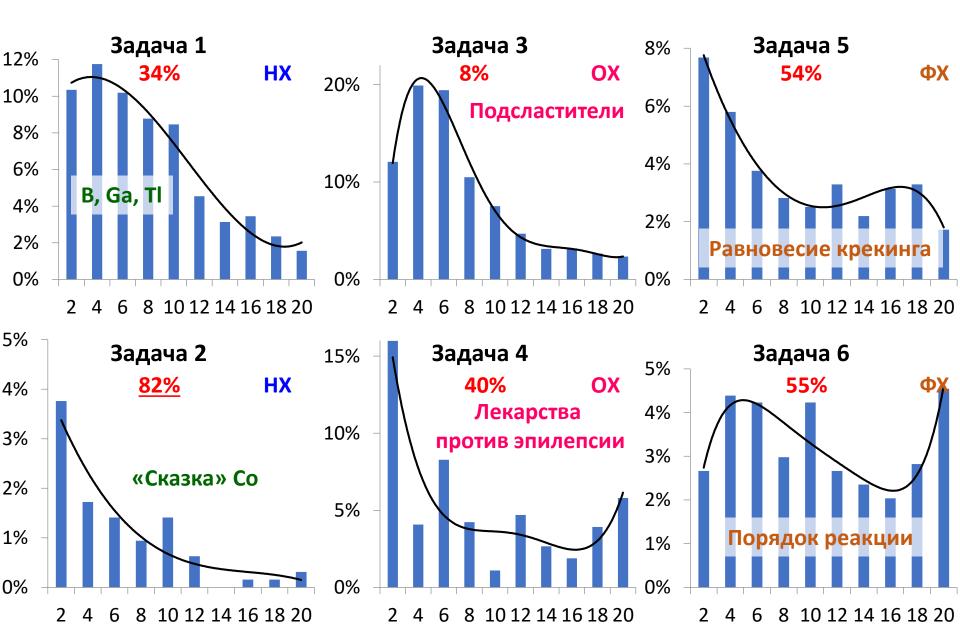
5%


0%

Структуры


LiH, Li₂O, Li₃N)

8 10 12 14 16 18 20


Статистика регионального этапа 18/19

Статистика регионального этапа 18/19 1 класс (652 человек)

Статистика регионального этапа 18/19 11 класс

Спасибо за внимание!