С.С.Бацанов Структурная химия Факты и зависимости

Глава 2. Геометрическое строение вещества (продолжение)

2.5 Двойные соли и комплексные соединения

Большинство неорганических веществ составляют соединения, где атомы одновременно связаны с элементами двух или более сортов. Соединения со смешанными анионами были рассмотрены выше, соединения со смешанными катионами, именуемые двойными солями, обсуждаются здесь. В последнем случае наличие в одной формульной единице катионов разного сорта и валентностей приводит к образованию комплексных соединений, в которых высокозарядные катионы образуют ковалентные связи с лигандами, координируя их вокруг себя, а низковалентные – играют роль внешнесферных заместителей.

Структурное изучение смешанных – по металлам или неметаллам – соединений не только значительно расширило базу данных, но позволило выявить и исследовать такие валентные состояния атомов, которые нехарактерны для однородных соединений. Стабилизация таких состояний обусловлена введением в состав вещества фрагмента, снижающего «концентрацию напряжённости». Например, CuI₂ и AuI₃ не существуют, а смешанные галогениды CuIX и AuIX₂ синтезированы и оказались вполне устойчивыми [2.365,2.366].

В принципе, комплексными соединениями являются продукты взаимодействия молекул, например NH₃ + HCl \rightarrow NH₄Cl или 2KCl + PtCl₂ \rightarrow K₂PtCl₄, однако традиционно комплексными считают те соединения, в которых центральным атомом является металл. С этой точки зрения KNO₃ и BaSO₄ не являются комплексными соединениями; мы будем рассматривать их как двойные окислы.

Таблица 2.45	Ллины связей (Å) в о	таэдрах комплексных соединений M _p AX ₆
--------------	----------------------	---

$M_nA(X)_6$	d(A-X)	M _n ACl ₆	d(A-Cl)	$M_nA(X)_6$	d(A-X)
K ₃ ReH ₆	1.707 ^a	K3IrCl6	2.357 ^h	Rb ₃ IrBr ₆	2.508 ^p
Na ₃ RhH ₆	1.67 ^b	(NH ₄) ₃ BiCl ₆	2.712 ⁱ	(NMe ₄) ₂ SnBr ₆	2.622 ^k
Na ₃ IrH ₆	1.68 ^b	K ₂ SnCl ₆	2.404 ^j	K ₂ TeBr ₆	2.694 ^j
K_2PtH_6	1.640 ^c	(NH ₄) ₂ SnCl ₆	2.418 ^j	(NH ₄) ₂ TeBr ₆	2.701 ^J
Mg ₂ FeH ₆	1.56 ^b	(NMe ₄) ₂ SnCl ₆	2.446 ^k	Rb ₂ TeBr ₆	2.701 ³
Mg ₂ RuH ₆	1.67 ^b	(NEt ₄) ₂ ZrCl ₆	2.463 ¹	(PPh ₄) ₂ UBr ₆	2.664 ^r
Mg ₂ OsH ₆	1.68 ^b	(NEt ₄) ₂ HfCl ₆	2.456 ¹	(H ₃ O) ₂ TcBr ₆	2.506 ^s
Cs ₂ CuF ₆	1.757 ^d	(NH ₄) ₂ TeCl ₆	2.538 ^j	(NH ₄) ₂ IrBr ₆	2.549 ⁹
(NH ₄) ₂ SiF ₆	1.688 ^e	Rb ₂ TeCl ₆	2.538 ^j	K ₂ PtBr ₆	2.464 ^t
Na ₂ SnF ₆	1.958 ^f	Na ₂ UCl ₆	2.641 ^m	$(NH_4)_2 Tel_6$	2.934 ^J
K ₂ OsF ₆	1.927 ⁸	K ₂ ReCl ₆	2.354 ⁿ	Rb ₂ TeI ₆	2.927 ^J
K ₂ IrF ₆	1.928 ^g	K ₂ PdCl ₆	2.309°	Na_2UI_6	3.052 ^u
K ₂ PtF ₆	1.921 ^g	K ₂ OsCl ₆	2.334 ⁿ	K ₂ PtI ₆	2.682 ^v
KOsF ₆	1.882 ^g	K ₂ IrCl ₆	2.371 ^p	Rb ₂ PtI ₆	2.683 ^v
KIrF ₆	1.910 ^g	Cs ₂ IrCl ₆	2.332 ^q	(NH4)2PtI6	2.655 ^v
KPtF ₆	1.886 ^g	K ₂ PtCl ₆	2.316 ⁿ	Cs ₂ PtI ₆	2.677 ^v

a)[2.367], b)[2.368], c)[2.369], d)[2.370], e)[2.371], f)[2.372], g)[2.373], h)[2.374], i)[2.375], j)[2.376], k)[2.377], l)[2.378], m)[2.379], n)[2.380], o)[2.381], p)[2.382], q)[2.383], r)[2.384], s)[2.385], t)[2.386], u)[2.387], v)[2.388]

Координационными полиэдрами в большинстве комплексных соединений являются октаэдры, реже – тетраэдры и квадраты, хотя последние характерны для кристаллохимии кобальта, никеля, платины и трёхвалентного золота. В табл.2.45 приведены межатомные расстояния A-X в соединениях типа M_nAX_6 с октаэдрическими комплексными ионами, где X = H, F, Cl, Br, I.

В квадратных комплексах двухвалентной платины длины связей Pt-X близки к таковым для четырёхвалентной платины, как видно из следующих данных [2.380,2.389]:

	H ₂ PtCl ₄	K ₂ PtCl ₄	$(NH_4)_2PtCl_4$	Cs ₂ PtCl ₄
d(Pt-Cl), Å	2.32	2.312	2.305	2.300
Аналогично обстоит дело и в	комплекси	ных бромил	цах платины: d(Pt-Br) = 2.435
Å в Rb ₂ PtBr ₄ и 2.464 Å в K ₂ Pt	Br ₆ .			

Равенство межатомных расстояний двух- и четырёхвалентной платины в квадратных (Pt^{II}) и октаэдрических (Pt^{IV}) координационных полиэдрах говорит об одинаковом характере связей. В рамках теории Гиллеспи это можно объяснить, представив двухвалентную платину как Pt^{IV}E, где E – свободная электронная пара. Тогда в PtX₂ электронная плотность связи Pt-X будет больше, чем в PtX₄ (где нет свободной валентности) и соответственно расстояние Pt-X в тетрагалогениде – больше, чем в дигалогениде. Действительно в структуре β-PtI₂ расстояние Pt-I равно 2.597 Å, тогда как в структуре Pt₃I₈ средняя длина связи Pt^{II} – I равна 2.620, а Pt^{IV} – I 2.690 Å [2.390]. В молекулах PtMe₃X, где X = Cl и I, длины связей Pt^{IV} – Cl и Pt^{IV} – I соответственно равны 2.48 и 2.60 Å [2.391], что заметно больше аналогичных связей в кристаллах PtX₂.

Таблица 2.46 Транс-влияние в соединениях двухвалентной платины

Соединение	Транс-лиганд	<u> </u>	d(Pt-Cl),A
[Pt(Acac) ₂ Cl] ⁻	0	3.2	2.276
[Pt(PEt ₃) ₂ Cl ₂]-транс	CI	3.1	2.303
[PtCl ₂ (C ₂ H ₆ OS)Py]	S	2.6	2.316
[Pt(PEt) ₃ Cl] ⁺	Р	2.2	2.366
[Pt(PMe ₃) ₂ Cl ₂]-цис	Р	2.2	2.376
$[Pt(\mu-dppm)_2Cl(PPh_3)]^+$	Р	2.2	2.403
$[Pt_2(\mu-dppm)_2Cl_2]$	Pt	2.2	2.405
[Pt(PPh ₂ Et) ₂ HCl]-транс	Р	2.1	2.422
[Pt(PPhMe ₂) ₂ Cl(SiPh ₂ Me)]	Si	1.9	2.45
Соединение	Транс-лиганд	ЭО	d(Pt-PR3),Å
$[Pt(PEt_3)_3F]^+$	F	3.7	2.239
[Pt(PEt ₃) ₃ Cl] ⁺	Cl	3.1	2.251
$[Pt(PEt_3)_3H]^+$	Р	2.2	2.300
$[Pt(PEt_3)_3H]^+$	H	2.1	2.335

В комплексных соединениях платины разнородные лиганды конкурируют за обладание электронами: чем сильнее лиганд оттягивает электроны от Pt, тем более ковалентной будет связь с атомом, находящемся в транс-положении на той же координате. В 1926 г. Черняев установил факт ионизации некоторыми лигандами в комплексах двухвалентной платины своих транс-партнёров (явление «транс-влияния»). Понятно, что изменение ионности связи сказывается на межатомных расстояниях во внутренней сфере комплексов. В табл.2.46 показано, что расстояния Pt-Cl увеличиваются по мере роста ковалентности связи Pt с атомом, находящимся в транс-положении к хлору [2.392-2.398]. Подобный ряд транс-влияния наблюдается для связей Pt- C [2.399] и в комплексных соединениях других металлов 8-й группы [2.400]. Вместе с тем, транс-влияние может быть замаскировано стерическими эффектами [2.394,2.401] или л-взаимодействием [2.392].

Таолица 2.47 Внутреннее транс-влияние в соединениях переходных металл	Таблица 2.47 Вну	утреннее транс-	-влияние в соединениях	переходных металлов
---	------------------	-----------------	------------------------	---------------------

Соединение	X – M – Y	d(M-Y), Å
K NHOE	O = Nb - F	2.06
K21N0OF5	F – Nb - F	1.84
(AsPh) NHO(NICS)	O = Nb - NCS	2.27
(ASFIL4)2NDO(NCS)5	SCN – Nb – NCS	2.09
(CoEp.)CrNO(CND-2H-O	ON - Cr - CN	2.075
(COEII3)CINO(CN)5.2H2O	NC - Cr - CN	2.03
K-MoOCL	O = Mo - Cl	2.63
K210100C13	Cl – Mo – Cl	2.40
	O = Mo - Br	2.83
(1114)2100015	Br – Mo – Br	2.55
K M-NO(CNI)	ON – Mn – CN	2.20
K4IVIIINO(CIN)5	NC – Mn – CN	2.12
K BaOCI	O = Re - Cl	2.47
K2REOCIS	Cl – Re – Cl	2.39
De(DMa.Db).Cl.	P - Re - Cl	2.454
Ke(1 Me21 11)3C13	Cl - Re - Cl	2.353
	Cl – Ru – Cl	2.35
CS2RUCI5H2O	$H_2O - Ru - Cl$	2.31
	$ON - Ru - NH_3$	2.19
	$H_3N - Ru - NH_3$	2.09
K O-NCI	$N \equiv Os - Cl$	2.605
K ₂ OSINCI5	Cl - Os - Cl	2.36
Oc(BMc Bb) Cl	P - Os - Cl	2.439
US(FMC2FII)3CI3	Cl - Os - Cl	2.347
I-(DMa Ph) Cl	P - Ir - Cl	2.429
11(11)3013	Cl - Ir - Cl	2.361
	Sn - Ir - Cl	2.438
K3[IICI5(SIICI3)]	Cl - Ir - Cl	2.365
	ON - Pt - Cl	2.75
	Cl – Pt – Cl	2.35

В табл.2.47 приведены данные структурного анализа [2.384, 2.393, 2.401, 2.402] ряда соединений, во внутренней сфере которых сосуществуют системы связей (координаты)Х-М-Х и Х-М-Ү. Как видно из таблицы, во всех случаях длина связи больше, когда в транс-положении находится атом с меньшей ЭО или с большей кратностью связи. Дополнительной иллюстрацией может служить структура SnWO₄, где в координатах О-Sn-О связь длиной 2.18 Å находится в транс-положении к 2.82 Å, а 2.39 Å к 2.39 Å, аналогично координаты О-W-О состоят из связей длиной 1.80 против 2.14 Å и 1.89 против 1.89 Å.

Приведенные изменения длин связей свидетельствуют о направленном взаимодействии атомов по линейным системам связей – координатам, а наличие соседних связей (в цис-положении) влияет в гораздо меньшей степени. Этот факт является ответом на вопрос, поставленный в 1-й главе о причинах незначительного отличия энергий связей атомов разной валентности : эффективные заряды действуют вдоль (точнее – внутри) связевых орбиталей и экранированы от влияния зарядов соседних связей.

Таблица 2.48 Средние длины связей в координационных соединениях

	Μ	Н	F	Cl	Br	Ι	0	S	Se	Te	H ₂ O	NH ₃	СО
	Cu	1.57	1.91	2.30	2.41	2.59	1.98	2.29			2.1	2.01	1.79
	Ag			2.32	2.45	2.63		2.56	2.64		2.3	2.17	2.14
	Au			2.28	2.41	2.56		2.25			2.16	2.02	
	Zn	1.62		2.26	2.37	2.57	2.10	2.32			2.09	2.04	
	Cd			2.50	2.61	2.75	2.28	2.44	2.64		2.32	2.33	
	Hg			2.42	2.54	2.70	2.19	2.41	2.65	2.73	2.29		
	Ti	1.96	1.87	2.32	2.46	2.67	1.83	2.40		2.79	2.07		2.00
	Zr	1.93	2.05	2.48	2.6	2.92	1.99	2.54	2.66	2.87		2.34	2.19
	Hf	20	1.98	2.44		2.86	1.96	2.52		2.96		2.29	
	V	1.74	1.86	2.29	2.52	2.65	1.80	2.34			2.13	21	1.95
	Nb	1.70	1.93	2.40	2.58	2.79	1.95	2.47	2.65		2.25		2.07
	Та	1.77	1.91	2.39	2.57	2.78	1.92	2.50	2.63		2.15		2.04
	Cr		1.87	2.33	2.58	2.72	1.80	2.27	2.51	2.81	2.02	2.06	1.87
	Мо	1.74	1.94	2.40	2.61	2.80	1.92	2.38	2.58	2.79	2.20	2.20	1.98
	W	1.74	2.08	2.41	2.62	2.84	1.92	2.37	2.67	2.78	2.2	2.31	2.00
	Mn	1.61	1.88	2.44	2.59	2.74	1.80	2.30	254	2.6	2.19	2.20	1.81
	Τc	1.70		2.39	2.50		2.06	2.40	2.50		2.08	2.14	1.90
	Re	1.68	1.94	2.37	2.54	2.72	2.01	2.34	2.61	2.65	2.20	2.21	1.94
	Fe	1.58	1.93	2.35	2.40	2.59	1.89	2.25		2.56	2.10	2.07	1.78
	Co	1.55		2.34	2.42	2.64	1.9	2.25		2.50	2.09	1.96	1.78
	Ni		1.9	2.35	2.41	2.6	1.9	2.18	2.30	2.54	2.08	2.07	1.77
	Ru	1.67		2.38	2.52	2.74		2.24			2.07	2.13	1.90
	Rh	1.67		2.38	2.53	2.72		2.38			2.19	2.11	1.85
	Pd	1.59	1.89	2.33	2.46		2.16	2.33	2.44		2.20	2.03	1.93
	Os	1.66	1.93	2.35	2.58	2.77	1.86	2.47			2.17	2.14	1.90
	Ir	1.62	1.93	2.37	2.55	2.73	2.03	2.44			2.16	2.24	1.87
	Pt	1.63	1.92	2.32	2.46	2.66	1.99	2.32	2.44	2.58		2.05	1.85
	Th	2.03		2.73							2.48		
L	<u> </u>		2.24	2.64	2.66	3.05	2.18		-		2.46		

123

В заключение этой части приведём (табл.2.48) усреднённые длины связей 29 наиболее распространённых металлов-комплексообразователей с атомами водорода, галогенов, халькогенов, группой СО и рядом нейтральных молекул. В этой таблице даны только длины σ-связей металлов с концевыми атомами водорода и галогенов, с мостиковыми (µ) атомами кислорода и халькогенов или с концевыми радикалами типа YR, где Y = O, халькоген и R – алкил. Там, где отсутствовали данные по связям с молекулами H₂O или NH₃, использовались длины связей с молекулами OH_nR_{2 – n} или NH_nR_{3 – n}. Эксперимент показывает, что длины связей с мостиковым галогеном на 10% больше, чем с концевым атомом, а длина связи M=Y, где Y – кислород или халькоген, примерно на 10% короче соответствующей одинарной связи. По этим поправкам можно оценить изменение межатомных расстояний при изменений координационных чисел атомов.

Представленный в табл.2.48 набор длин связей является результатом усреднения данных структурного анализа тысяч координационных соединений без учёта различных валентных состояний и координационных чисел металлов-комплексообразователей. Поэтому предложенные межатомные расстояния являются ориентировочными величинами с погрешностью, как правило, ± 0.05 Å. В составлении таблицы были использованы обзоры [2.185, 2.403-2.410] и оригинальные статьи [2.411,2.412]. Заметим, что расстояния М-OH₂ в среднем всего на $\sim 0.1-0.2$ Å больше, чем нормальные связи М-O, хотя в первом случае связь носит донорно-акцепторный характер. К этому вопросу мы вернёмся при обсуждении ван-дер-ваальсовых расстояний.

Межатомные расстояния во внутренней сфере комплексных соединений занимают промежуточное положение между длинами связей в молекулах и бинарных кристаллах, т.к. координационные числа центральных атомов в них подобны кристаллам, а лигандов – как в молекулах. Конечно, транс-влияние и эффект электронной конкуренции лигандов могут сместить эту величину в любую сторону.

M _n AO _m	d(A-0)	M _n AO _m	d(A-O)	M _n AF _m	d(A-F)
RbUO ₂ (NO ₃) ₂	1.58	K ₂ SO ₄	1.39	(NH ₄) ₂ BeF ₄	1.55
K ₂ UO ₂ F ₅	1.75	Ba(HSO ₄) ₂	1.443 ^a	Li ₂ BeF ₄	1.56
BaUO ₄	1.90	CaSO ₄	1.455	Tl ₂ BeF ₄	1.61
CaUO ₄	1.91	ZnSO ₄	1.48	Cs ₂ ZrF ₆	2.035
MgUO₄	1.92	HgSO ₄	1.497	Rb ₂ ZrF ₆	2.040
MnUO ₄	2.13	NiSO4	1.505	K ₂ ZrF ₆	2.126
GeUO₄	2.39	CuSO ₄	1.51	KSbF ₆	1.708
K ₂ WO ₄	1.79	CdSO₄	1.526	NaSbF ₆	1.776
Na ₂ WO ₄	1.88	BeSO ₄	1.53	LiSbF ₆	1.876
CaWO ₄	1.75	Ba(HSO ₄) ₂	1.563 ^b	K ₂ UF ₆	2.347
MgWO ₄	1.95	KHCO3	1.257 ^c	Na ₂ UF ₆	2.390
CdWO ₄	1.96	CaCO ₃	1.294	CaPdF ₆	1.893
FeWO ₄	2.06	KHCO3	1.337 ^d	CdPdF ₆	2.075

Таблица 2.49 Изменение длин связей (Å) при вариации катионов

а) для связи Ва--О (SO₄), b) H--O(SO₄), c) K--O(CO₃), d) H--O(CO₃)

Перейдём теперь к обсуждению структур двойных солей и окислов с разнородными катионами [2.413]. Наиболее яркий пример изменения длин связей А-О в системах М-А-О, где М – варьируемый катион, дают кислородные соединения урана. В табл.2.49 приведены соответствующие данные вместе с аналогичными примерами из структурной химии кислородных и фтористых соединений других металлов. Во всех сравниваемых случаях N_c(A) одинаковы.

Как можно видеть, при вариации внешнесферных катионов закономерно изменяются длины связей во внутренней сфере комплексов в зависимости от ЭО варьируемого атома. В отдельных случаях, например в сульфате бериллия, монотонная зависимость нарушается из-за сильного поляризующего действия маленького катиона, но, как правило, увеличение ионности связи во внешней сфере приводит к росту ковалентности связи во внутренней.

Особый интерес представляет структура Ва(HSO₄)₂ [2.414], в которой сульфат-ион связан одновременно с Ва и Н, сильно различающимся по своим ЭО, и в результате в одном комплексе реализуется одновременно самая длинная и самая коротка связи S-O. Аналогичная ситуация наблюдается в структуре КНСО₃ в отношении связи С-O [2.415].

Следует заметить, что в случае двойного окисла или фторида, в которых катионы разного типа занимают разные кристаллографические позиции, возможны нарушения отмеченной закономерности из-за стерического фактора, когда крупные катионы будут «раздвигать» анионы, а высокозарядные катионы малого размера — занимать межатомные пустоты без существенного изменения длин связей. Как только возможности стерического фактора будут исчерпаны, в действие вступает описанная выше компенсационная закономерность.

Приведём примеры. В ряду CaSnO₃, SrSnO₃, BaSnO₃ длина связи Sn-O растёт в последовательности 1.960, 2.016, 2.136 Å. В аналогичных производных MTiO₃ расстояние Ti-O увеличивается в ряду 1.90, 1.95, 2.00 Å. Вместе с тем, в KMnF₃, NaMnF₃, TlMnF₃ длина связи закономерно увеличивается при росте ЭО варьируемого металла: 2.093, 2.114, 2.125 Å, но у RbMnF₃ происходит стерическое увеличение межатомного расстояния Mn-F до 2.120 Å.

Заметим также, что рассматриваемая закономерность не всегда соблюдается у таких соединений как нитраты, карбонаты, фосфаты и т.п. по ряду причин. Во-первых, в комплексах тетра- или тригональной структуры в транс-положении к рассматриваемой связи находятся два или три лиганда с соответствующим ослаблением эффекта. Во-вторых, в пределах одной структуры длины связей могут изменяться довольно сильно, но при маленьком координационном числе (3 или 4) использование средних величин может маскировать явление. Наконец, возможны большие ошибки опыта при определении длин связей лёгких центральных атомов в присутствии тяжёлых внешнесферных катионов. Однако конкретное рассмотрение различных трёхцентровых систем позволяет чётко выявить обсуждаемый эффект.

Так, в Cu(NO₃)₂ длина связи N–O варьирует от 1.13 до 1.35 Å в зависимости от расстояния атома меди до атома кислорода NO₃-группы: если длина связи Cu–O(1) составляет 2.0 Å, то расстояние O(1)–N в среднем равно 1.32 Å, при расстоянии Cu–O(2) 2.5 Å связи O(2)–N имеют среднюю длину 1.15 Å. В структуре Co(NO₃) ₃ нитро-группы связаны с металлом двумя своими углами, а третий ктслород остаётся свободным (координационное число кобальта равно 6). Соответственно длина связи N--O в первом случае составляет в среднем 1.28, а во втором – 1.19 Å. Аналогично обстоит дело в структуре карбоната таллия: длина связи C--O равняется 1.24 Å когда расстояние Tl--O равно 2.82 Å, и 1.28 Å – когда расстояние Tl--O 2.68 Å.

В этом контексте интересно рассмотреть изменение структуры BaSO₄ при нагревании: расстояние Ba-O увеличивается от 2.941 до 3.023 Å (1010°C), а длина связи S-O сокращается от 1.475 до 1.448 Å [2.416]. Также изменяются при нагревании расстояния внутри и между координационными полиэдрами в K₂PtCl₆ [2.417].

Для изучения обсуждаемого эффекта сопоставиммежатомные расстояния А–Х в соединениях типа M_kAX_m и AX_n , где А имеют одинаковые координационные числа и следовательно различие длин связей обусловлено только различием ЭО атомов М и А (табл.2.50). Закономерное изменение длин связей показывает, что ионность связей М–Х и ковалентность А–Х больше, чем в бинарных окислах и галогенидах.

M _k AX _m o	i(A-X)	AX _n	d(A-X)	MAO _k	d(AO)	A _n O _m	d(A-O)
NH4HgCl3	2.34	HgCl ₂	2.53	KAlO ₂	1.66		
CsCoCl ₃	2.45	CoCl ₂	2.51	YAlO ₃	1.85	Al ₂ O ₃	1.91
KNiCl ₃	2.40	NiCl ₂	2.47	LaAlO ₃	1.89		
KTeF5	1.94	TeF4	1.99	YScO ₃	1.97	Sec. 0.	2 00
KRuF ₆	1.91	RuF5	1.96	LaScO ₃	2.03	30203	2.09
Na ₂ SnF ₆	1.96	SnF_4	2.00	BaCeO ₃	2.20	Ce_2O_3	2.34
Li ₄ UF ₈	2.27	UF ₄	2.29	CaTiO ₃	1.90	TiO ₂	1.96
CsVCl ₃	2.48	VCl ₂	2.54	BaZrO ₃	2.10	ZrO ₂	2.26
CsVBr ₃	2.59	VBr ₂	2.67	CaSnO ₃	1.96	SnO ₂	2.05
CsVI3	2.78	VI ₂	2.87	BaPbO ₃	2.14	PbO ₂	2.16
LiVO ₂	1.95	VO	2 00	KMnO ₄	1.60	Mn ₂ O ₇	1.77
LaVO ₃	1.96	v 203	2.00	KFeO ₂	1.73		
CeCrO ₃	1.93	Cr ₂ O ₃	1.99	YFeO ₃	1.92	Fe ₂ O ₃	2.03
SrMoO3	1.99	MoO ₂	2.01	LaFeO ₃	1.96		
CaMnO ₃	1.87	Mn_2O_3	1.89	SnWO ₄	1.75	WO3	1.93
]				CaTeO₄	1.95	TeO ₂	2.22

Таблица 2.50 Сравнение длин связей (Å) в двойных и бинарных соединениях

Таким образом, смена катионов приводит к определённому изменению размеров комплексных ионов. Поскольку ЭО атомов изменяются обратно пропорционально их размерам (подробнее см. раздел 2.10), налицо компенсационная зависимость: чем меньше размер внешнего катиона, тем больше габариты комплексного аниона, что и приводит к плотнейшей упаковке ионов. Такая взаимозависимость наиболее ярко проявляется в силикатах.

Если раньше структуры силикатов описывались с позиций плотнейшей упаковки анионов, а меньшим по размеру катионам отводили места в пустотах,

то в 1959 г. Белов [2.418] открыл 2-ую главу кристаллохимин силикатов, в которой основной мотив структуры определялся уже крупными катионами. Он установил, что рёбра кремнекислородных тетраэдров соизмеримы с рёбрами кислородных октаэдров вокруг Mg, Al и Fe, что и позволяет плотно упаковать кристаллическое пространство координационными полиздрами SiO₄ и MO₆. В случае же более крупных катионов соразмерность общих элементов структурных единиц может быть достигнута только при условии соединения SiO₄ в радикалы Si₂O₇, т.е. изменение размеров катионов изменяет и строение анионов.

Основные результаты рентгеноструктурного анализа силикатов представлены в книгах Белова и здесь рассматриваться не будут. Самой характерной чертой силикатов является тетраэдрическая координация кремния и приблизительное постоянство длин связей Si–O (~ 1.6 Å). О'Кифи [2.419] показал также, что расстояние Si...Si в кристаллических и стеклообразных силикатах, а также в нитридах, нитридосилицидах, SiC и даже в галогенидах кремния практически постоянно и лежит в пределах 3.08 ± 0.06 Å. Он обобщил идею Белова о деформации анионов, стремящихся "приспособиться" к разноразмерным катионам, превратив её в основной принцип построения любого кристалла: при посто-янных длинах связи для данной координации атомов система стремится занять максимальный объём, которому отвечает минимум энергии кристаллической решётки. Этот принцип позволил рассчитать геометрию ряда структурных типов.

Помимо рассмотренных выше комплексных соединений и двойных солей, молекулы могут взаимодействовать и по донорно-акцепторному механизму, что по теплотам образования является промежуточным между нормальным химическим соединением и вдв образованием. Состав и строение таких аддуктов рассмотрены в обзорах [2.420-2.423], а здесь отметим общее свойство, объединяющее их с нормальными комплексными соединениями, а именно – удлинение внутримолекулярных связей по мере сокращения межмолекулярных контактов. Важной особенностью этих аддуктов является зависимость межмолекулярных расстояний от угла, под которым соединяются их компоненты [2.422, 2.424], т.е. своеобразная анизотропия внешней конфигурации атомов. Данный вопрос будет специально рассмотрен в разделе о вдв радиусах.

2.6 Металлоорганические комплексы

Комплексные соединения, во внутренней сфере которых находятся органические лиганды, можно считать металлоорганическими соединениями, хотя последний термин применяют, когда органические молекулы или радикалы составляют более половины лигандов. В настоящее время число таких комплексов столь велико, что рассмотреть более или менее полно этот класс веществ в рамках данной книги невозможно. Поэтому здесь мы остановимся только на классических соединениях с органическими лигандами, на π -комплексах и на карборанах, поскольку именно эти вещества наиболее интересны со структурной точки зрения и важны в практическом плане.

Использование органических лигандов позволило решить ряд задач, в частности установить зависимость длин связей не только от координационного числа, но и от формы координационного полиздра. Так, на примере комплексов двухвалентных кобальта и никеля было установлено, что тетраэдрическое распо-

127

ложение атомов приводит к некоторому удлинению связей М-N, S, O по сравнению с квадратной координацией. Это объясняется тем, что в квадратных комплексах Со и Ni реализована гибридизация типа dsp², в которой d-электроны поступают с предыдущего слоя (с большим Z*). Альтернативным объяснением по Гиллеспи является достраивание свободной электронной парой квадрата до октаэдра с соответствующим увеличением длины связи.

По мере увеличения числа органических молекул во внутренней сфере комплекса структура соединения усложняется и всё более определяется органическим фрагментом. Так, в структуре соли Цейзе $KPt(C_2H_4)Cl_3$ молекула этилена занимает одно координационное место (ориентирована к металлу двойной связью) и напоминает структуру пирита FeS₂, в которой радикал S₂ также ориентирован к металлу центром гантели. Поэтому соль Цейзе считают обычным комплексным соединением. Однако, если ненасыщенные молекулы становятся единственными или преимущественными лигандами комплекса, то формируются структуры, не имеющие аналогов в классической кристаллохимии координационных соединений, а именно π -комплексы или металлоценовые молекулы.

Родоначальник π -комплексов, ферроцен Fe(C₃H₅)₂, был синтезирован в 1951 году и оказался наредкость (по сравнению с другими металлоорганическими соединениями) устойчивым : он не разлагается при нагревании до 470°С и при кипячении с концентрированной соляной кислотой или 10%-ной щёлочью, может быть перегнан с водяным паром, что невозможно для любых других молекул со связями M–C.

Структурный анализ указал на причину устойчивости этого вещества: его строение можно уподобить сэндвичу (Рис.3), в котором атом Fe «запечатан» между двумя пятичленными кольцами. Расстояние Fe-C со всеми углеродными атомами практически одинаково и равно 2.06 ± 0.01 Å, а длина связи C-C в C₃H₅ равна 1.42 ± 0.01 Å. Тот факт, что Fe одновременно связан с 10 атомами углерода, а последние входят в ароматические системы – кольца C₅H₅ – придаёт всей молекуле большую термическую прочность.

Рис.3 Структура ферроцена

Поскольку циклопентадиэнил, обычно обозначаемый как Ср, образовался путём вычитания протона из С5Н6, этот радикал имеет отрицательный заряд, т.е. играет роль аниона. Поэтому чисто сэндвичевыми молекулярными структурами могут обладать только металлы в двухвалентном состоянии. В случаях металлов другой валентности лкомплексы имеют другую структуру, а именно : полусэндвичи, когда атом металла располагается над кольцом Ср, образуя пирамиду, например InCp, ТіСр, ХВеСр, ХSnСр; клинообразный сэндвич, когда два или три Ср располагаются по углам тетраэдра, а в остальных углах находятся обычные лиганды или свободные электронные пары, например GaCp₃, InCp₃, GeCp₂, SnCp₂, PbCp₂, Cp₂TiCl₂, СрТіВг₃, Ср₂МоХ₂, Ср₃UX; тетраэдрические сэндвичи, когда атом металла координирован по тетраздру 4Ср, например UCp₄, Al₄Cp₄, ZrCp₄, HfCp₄, причём в последних случаях атом металла связан с тремя (Zr) или с двумя (Hf) кольцами по π -типу, а с остальными – обыч-ными освязями.

Различные типы связей М-С₅H₅ характеризуются различным расположением атомов металла над углеродным кольцом : либо М находится точно над серединой кольца и связан сразу с 5 атомами углерода (η^5) π -связью М-С, либо смещён к одному из атомов углерода и связан только с одним атомом углерода (η^1) σ -связью М-С. В случае бериллоцена ВеСр₂ в одной структуре одновременно реализованы оба типа связей : с одним кольцом Ве связан по π -механизму, а с другим – σ -связью, причём атом металла «прыгает» между двумя положениями и поэтому C₅H₅-кольца кристаллографически одинаковы. Однако при низкой температуре удалось заморозить обе структуры и различить тем самым два типа связей.

Сэндвичевую структуру имеют помимо молекул и многие ионы, например LiCp₂⁻, FeCp₂⁺, CoCp₂⁺. В последних двух ионах металлы находятся в трёхвалентном состоянии, причём ионизация металла привела к различному изменению длин связей : d(Fe^{III}_C) = 2.097 и d(Co^{III}_C) = 2.050 Å, против 2.064 и 2.119 Å для связей Fe^{II}_C и Co^{II}_C. Такое разное поведение объясняется по Сиджвику более устойчивой для d-элементов 18-электронной конфигурацией. Действительно, у двухвалентных Fe и Co на внешней оболочке находятся 6 и 7 d-электронов, а от Cp они получают по 6 электронов, следовательно в FeCp₂ на внешней оболочке металла 18, в CoCp₂ – 19 электронов. Поэтому окисление Fe^{II} приводит к нарушению «правила 18 электронов» и связь ослабевает, удлиняется, тогда как ионизация Co^{II} наоборот приводит к формированию 18-электронной оболочки и укреплению связи.

Подробный обзор металлоценов дан в статье Ютци и Бэрфорда [2.425], а на рис.4 воспроизведена структурная классификация пентадиэнильных комплексов из этой работы.

В табл.2.51 приведены длины концевых связей М-С(Ср) по данным обзоров [2.425, 2.426]. Сравнение длин связей М-С в *π*-комплексах и соответствующих алкилах показывает, что в первом случае расстояние примерно на 0.3 Å больше, чем во втором из-за более полярной связи (большего N_c), т.к. ЭО арильного углерода больше, чем алкильного (см. раздел 1.4).

	aomique Die i			Jamepo,			•
М	d(M–C)	М	d(M–C)	М	d(M–C)	М	d(M-C)
Li	2.258	В	1.683	Sn	2.68	Tc	2.292
Na	2.68	Al	2.388	Pb	2.79	Re	2.297
Κ	3.03	Ga	2.405	v	2.334	Fe	2.116
Rb	3.14	In	2.592	Nb	2.408	Co	2.098
Cs	3.350	TI	2.663	Та	2.439	Ni	2.10
Cu	2.27	Sc	2.530	As	2.47	Ru	2.217
Be	1.93	Y	2.654	Sb	2.40	Rh	2.198
Mg	2.341	La	2.840	Bi	2.69	Pd	2.34
			•		•		

Таблица 2.51 Расстояния металл-углерод (А) в металлоценах

Ca Sr Ba Zn	2.609 2.750 2.898 2.28	Ti Zr Hf Si Ge	2.392 2.510 2.484 2.42 2.526	Cr Mo W Mn	2.209 2.365 2.33 2.146	Os Ir Pt Th U	2.170 2.158 2.326 2.817 2.752	
----------------------	---------------------------------	----------------------------	--	---------------------	---------------------------------	---------------------------	---	--

Помимо комплексов с Ср, синтезированы и структурно изучены аналогичные соединения с метилзамещёнными пятичленными циклами, которые обычно обозначают Ср^{*}. Расстояния М-С в них практически такие же, как и в комплексах с Ср и равны в среднем 1.50 Å, а метильные группы отклоняются от плоскости кольца на ~5° в сторону от атома металла.

Рис.4 Структурная классификация циклопентадиэнильных комплексов

Кроме перечисленных π -комплексов, были синтезированы аналогичные соединения с участием бензола (Bz) или C₆Me₆, в которых атом металла связан сразу с 6 атомами углерода. Первым представителем данного класса соединений был дибензолхром CrBz₂, который можно считать идеальным π -комплексом, т.к. в его образовании совершенно не участвуют ионные силы. Впоследствии были синтезированы такие же молекулы и с другими металлами. Расстояния М-С в них близки к таковым в пентадиэнильных комплексах.

Выдающимся достижением синтетической и структурной химии металлоорганических соединений явилось получение и установление строения многоэтажных л-комплексов. На рис.5 приведена модель структуры однородного трёхпалубного комплекса. Расстояния Ni от углерода концевого Ср равно 2.085, а от мостикового – 2.145 Å. В работах [2.427,2.428] определены структуры трёхпалубных комплексов, центральную плоскость которых составляет шестиугольник В₆, а верхний и нижний циклы – C₅H₅, металлическими атомами являются V, Nb, W. Рекордным пока является 6-палубный сэндвич, «дном» и «крышей» которого являются C₅-кольца, а средними этажами B₃C₂-кольца [2.429].

с.5 Трех- и четырехпалуоные сэндвичевые структуры

Своеобразными по характеру связей и структурам являются комплексы с участием СО-групп, которые легко сосуществуют с Ср во внутренней сфере, образуя соединения типа M(CO)_k(C₅H₅)_m вплоть до M(CO)_n. Молекула СО в сво-бодном состоянии имеет связь длиной 1.128 А, что несколько меньше длины свя-зи С=О в молекуле CO₂ (1.160 Å), т.е. кратность связи в СО должна быть больше двух. Отсюда следуют две возможности для взаимодействия СО с переходными металлами: либо по типу М=С=О, либо М-С=О. Фактически же в образовании карбонильных комплексов участвуют как с. так и п-орбитали молекулы СО, причём в ряде случаев молекула СО ориентируется к металлу двойной связью.

Число СО-групп, которые координируются вокруг металла, определяется правилом 18 электронов, учитывая, что каждый карбонил поставляет по 2 электрона. Тогда согласно правилу Сиджвика стабильными комплексами будут тетракарбонилы Ni и Pd, пентакарбонилы Fe и Mn, гексакарбонилы Cr, Mo и W. Структурный анализ показал, что 4CO координируются по тетраэдру, 5CO по тригональной бипирамиде, 6CO – по октаэдру.

L

В комплексах с разнородными лигандами последние конкурируют за передачу электронной пары металлу: чем меньше способность лиганда L удерживать π -электронов, тем больше смещение электронного заряда от L к M. В результате конкуренции лигандов происходит упрочнение связей M–CO в $M(CO)_nL$ по сравнению с $M(CO)_{n+1}$, причём транс-связи M–CO упрочняются сильнее, чем цис-связи.

Стабилизирующее влияние других лигандов, например Ср, NO, галогенов, приводит к образованию таких смешанных карбонильных комплексов, которые в виде однородных соединений не существуют. Таковыми являются Cp₂Ti(CO)₂, CpNb(CO)₄, (C₈H₉)Re(CO)₃, (NO)Co(CO)₃, CpRh(CO)(η^1 -C₂F₅)I, ClIr(CO)₃ и др. Понятно, что упрочнение связи М--СО должно приводить к ослаблению связи С--О за счёт уменьшения электронной плотности атома углерода. На такую особенность, аналогичную компенсационной зависимости в длинах связей у соединений со смешанными лигандами и эффекту транс-влияния, указывал ряд авторов (см. в частности [2.430].

Ещё одним способом стабилизации структур карбонильных комплексов является образование многоядерных соединений за счёт связей М-М. Последние формируют различные координационные полиэдры – гантели, треугольники, тетраэдры, октаэдры и т.д. Каркас из металлических связей упрочняет молекулу в целом, придавая ей некоторые черты металлической структуры; этот фрагмент многоядерных комплексов называют кластером. К настоящему времени синтезировано и изучено множество кластерных соединений, их структурная химия стала самостоятельным и быстроразвивающимся разделом кристаллохимии, чему будет посвящён следующий параграф.

Заканчивая описание карбонильных соединений, приведём некоторые результаты структурного исследования недавно синтезированных комплексов типа $[A_7M(CO)_3]^{3-}$, где A = P, As, Sb, а M = Cr, Mo, W [2.431]: для комплексов хрома расстояния P–P, As–As, Sb–Sb соответственно равны 2.121, 2.345, 2.704 Å, а длины мостиковых связей Cr–P, Cr–As, Cr–Sb 2.514, 2.664, 2.827 Å, т.е. лежат в пределах обычных ковалентных длин связей.

В ряде металлоорганических комплексов реализованы связи центральных атомов (металлов 6-8 подгрупп) с нейтральными молекулами H₂, O₂, N₂, которые ориентированы Т-образным способом. Общим для этих комплексов является удлинение связи внутри молекулы по мере приближения её к металлу; так при уменьшении расстояния M-H₂ с 1.89 до 1.64 Å длина связи H-H возрастает с 0.82 до 1.65 Å [2.432].

Принципиально важным классом элементоорганических соединений являются карбораны, в которых атомы бора замещают углерод с образованием молекул C_2B_{n+2} или радикалов типа $C_2B_3H_5$. Последний по строению похож на C_5H_5 и играет ту же роль, что и Ср, как видно на примере структуры трёхпалубного сэндвича ($C_2B_3H_5$)Со(C_5H_5)₂, изученного в работе [2.433] (рис. 4). В карборанах атомы бора образуют не только плоские кольцевые структуры, но и пространственные фигуры из различного числа атомов. Такие группировки относятся к кластерам и будут рассмотрены в следующем параграфе.

В заключение раздела укажем на работу [2.434], которой были получены сэндвичи M_nBz_m в газовой фазе, причём в зависимости от сорта металла эти комплексы имеют разную структуру: если M = Sc, Ti, V, то образуется многопалубные сэндвичи (как и в кристаллическом состоянии) состава от M_1Bz_2 M_4Bz_5 ; если M = Fe, Co, Ni, то Bz координируются вокруг M, образуя комплексы состава M_1Bz_2 , M_2Bz_3 , M_3Bz_3 , M_4Bz_4 M_nBz_4 , причём атомы металла внутри бензольных колец соединяются в гантели, треугольники, тетраэдры и более сложные металлические каркасы. Аналогичный результат получен и для комплексов с фуллеренами.

2.7 Кластеры

Первым синтезированным кластером является описанный в 1907 г. Ta₆Cl₁₄. 7H₂O, в структуре которого имеются октаэдры Ta₆. Именно наличие гомоядерных связей М–М или X-X, приводящих к отклонению состава вещества от стехиометрии, является отличительной чертой кластерных соединений.

Наибольшее значение в структурной химии кластеров играют карбораны, строение которых согласно Уэйду [2.435] подчиняется следующим правилам : 1) грани кластера образованы из треугольников CB₂ или B₃; 2) атомы В или C могут занимать либо все вершины полиздра (клозо-структуры), либо все, кроме одной (нидо), или все, кроме двух (арачно); 3) каждый атом, входящий в каркас кластера (скелетный атом), имеет связь с водородом или другим одновалентным лигандом, направленную от центра полиздра; 4) остающиеся электроны валентных оболочек, в количестве b пар, являют-ся скелетными связывающими электронами; 5) каждый скелетный атом В или C поставляет для скелетного связывания три атомные орбитали (AO); 6) конфигурацию кластеров обуславливает образование n + 1 скелетных молекулярных орбиталей из AO, где n - число вершин полиздра (n = b - 1); 7) кластер с *a* скелетными атомами и *b* электронными парами является клозо-структурой, при b = a + 1 получается нидо- и при b = a + 3 арачно-структуры.

Понятно, что карбораны представляют собой соединения с порядком связи (числом электронных пар на одну связь) меньшим единицы, что нехарактерно для нормальных органических и неорганических молекул. Так, в клозоструктурах $B_n H_n^{2-}$ средний порядок связи равняется числу скелетных электронных пар, деленному на число связей, т.е. рёбер в B_n -полиэдрах. Если кластер состоит из *n* скелетных атомов, то число скелетных пар равно n + 1, а число рёбер (3n - 6), что приводит для анионов $B_6 H_6^{2-}$ и $B_{12} H_{12}^{2-}$, где все рёбра одинаковы, к порядку связи 0.58 и 0.43 соответственно. Порядок связи В-В в карборанах коррелирует с её длиной.

Межатомные расстояния в карборанах зависят от координационных чисел: при увеличении N_c в последовательности $4 \rightarrow 4.5 \rightarrow 5 \rightarrow 5.5$ средние длины связей B–B растут в ряду $1.64 \rightarrow 1.73 \rightarrow 1.83 \rightarrow 1.95$ Å; для связей C–C при N_c = 4, 5, 6 расстояния соответственно равны 1.42, 1.49, 1.65 Å [2.435]. Последний результат важен для структурной химии, т.к. в обычных органических соединениях координационное число углерода не превышает четырёх.

На рис.6 представлена графическая классификация перечисленных типов кластеров .

Рис.6 Геометрическая классификация кластеров: клозо-, нидои арачно-структуры

Межатомные расстояния в карборанах зависят от координационных чисел: при увеличении N_c в последовательности 4 — 4.5 — 5 — 5.5 средние длины связей В-В растут в ряду 1.64 — 1.73 — 1.83 — 1.95 Å; для связей С-С при N_c = 4, 5, 6 расстояния соответственно равны 1.42, 1.49, 1.65 Å [2.435]. Последний результат важен для структурной химии, т.к. в обычных органических соединениях координационное число углерода не превышает четырёх.

Борсодержащие кластеры содержат в качестве лигандов атомы водорода, CO-группы, радикалы типа PR_3 и AsR_3 , где R – алкил или арил, а в скелетной структуре – различные переходные металлы. Межатомные расстояния M–B в таких металлокарборанах [2.185, 2.436 -2.439] варьируют в зависимости от особенностей структуры, но в большинстве случаев близки к длинам ковалентных связей (с учётом их кратности) и поэтому могут быть описаны с помощью соответствующих атомных инкрементов – ковалентных радиусов.

Комплексы, содержащие карбонильные группы, как уже было сказано, часто образуют многоядерные структуры. В табл.2.52 приведены примеры кластеров с числом взаимосвязанных металлических атомов от 3 до 32, образующих различные координационные полиэдры – треугольники, квадраты, тетраэдры, тригональные дипирамиды, октаэдры, тригональные призмы, кубы и кубооктаэдры – вплоть до фрагментов плотнейших упаковок – кубической и гексагональной [2.440].

Центр	Кластер	Центр	Кластер
кластера	(в целом)	кластера	(в целом)
	Os ₃ (CO) ₁₂	Р	[Rh ₉ P(CO) ₂₁] ²⁻
-	Ir ₄ (CO) ₁₂	-	$[Fe_4Pt_6(CO)_{22}]^{2^-}$
-	Os ₅ (CO) ₁₅	-	$[Pt_{12}(CO)_{24}]^{2-}$
-	[Co ₆ (CO) ₁₄] ⁴ -	Rh	$[Rh_{13}(CO)_{24}H_3]^{2-}$
C	Ru ₆ (CO) ₁₇	Rh	[Rh ₁₄ (CO) ₂₅] ⁴
N	[Rh ₆ N(CO) ₁₅] ²⁻	-	[Pt ₁₅ (CO) ₃₀] ²⁻
-	[Rh ₇ (CO) ₁₆] ³⁻	Rh, S	$[Rh_{17}(S)_2(CO)_{32}]^{3-}$
-	Ni ₈ (CO) ₈ (PR) ₆	2Pt	[Pt ₁₉ (CO) ₂₂] ⁴⁻
C	$[Co_8C(CO)_{18}]^{2-}$	3Pt	$[Pt_{26}(CO)_X]^{2-}$
Р	[Rh ₉ P(CO) ₂₁] ²⁻	6Pt	$[Pt_{38}(CO)_{44}]^{4-}$

ruoma.se merushokupoonnishibe khuerepbi	Табл.2.52	Металлокарбонильные кластер	ы
---	-----------	-----------------------------	---

Из общих соображений следует, что чем больше металлических атомов в кластере M_n (CO)_m, т.е. больше отношение n/m, тем ближе должна быть структура кластера к структуре чистого металла. Однако реально длины связей М-М в кластерах отличаются от таковых в металлах как в большую сторону (из-за стерических причин), так и в меньшую (из-за образования кратных связей между скелетными атомами).

Помимо приведенных классов соединений, кластерные структуры имеются и у галогенидов, халькогенидов и пниктидов переходных металлов. Кристаллохимия этих комплексов базируется на следующих простых принципах [2.441]: понижение формальной валентности металла соответствует увеличению объёма кластера, так NbCl₅ – изолированная молекула, в Nb₂I₈ появляется гантель Nb₂, в Nb₃I₈ – треугольник Nb₃, в Mo₆Se₈ – октаздр Mo₆; рост размера лиганда увеличивает расстояние М-М в однотипных кластерах, так в Nb₃X₈ d(Nb–Nb) = 2.81 для X = Cl, 2.88 для Br и 3.00 Å для I.

Очень распространёнными структурными единицами в кластерах являются октаэдрические группировки M₆X₈ и M₆X₁₂, которые могут сочленяться

друг с другом вершинами, рёбрами, гранями, образуя бесконечные цепи, ленты или пространственные сетки. В случае вершинного сочленения октаэдров получаются составы $M_{2/2}$ $M_4X_{8/2} = M_5X_4$, например Ti_5Te_4 , V_5S_4 , V_5Se_4 , V_5Sb_4 , Nb_5Se_4 , Nb_5Se

2

>

Часто в одной структуре одновременно существуют "строительные блоки" разных типов, а также пропуски атомов – дефекты в металлической и / или в неметаллической решётках, в результате чего получаются самые разнообразные составы. Например, в Nb₂₁S₈ имеются изолированные (M_5X_4) и счетверённые ($4M_5X_4$) октаздры; в структуре Ti₈S₃ – сдвоенные цепи ($2M_5X_4$), соединённые с каркасами из $4M_5X_4$ -цепей, и другие комбинации кластеров.

Химически очень важным классом веществ являются галогениды редкоземельных металлов (Ln) с формальной валентностью меньше 3. Структура и физические свойства соединений типа LnI_2 отвечают формуле $Ln^{3+}(I^-)_2e^-$, тогда как строение галогенидов Ln с v <2 оказалось типично кластерным, основанным на цепях (как изолированных, так и сдвоенных) М₆-октаэдров, окружённых галогенами.

Таблица 2.53	Строение кластерных гал	ЮГЕНИДОВ DEДКОЗЕМЕЛЬНЫХ МЕТАЛЛОВ
the second se		

Состав	Тип	Структура	Примеры
M ₇ X ₁₂	M ₆ X ₁₂	Дискретный М ₆	Sc ₇ Cl ₁₂ , Ln ₇ I ₁₂
M_2X_3	M ₆ X ₈	Изолирован.цепи	Ln ₂ Cl ₃ , Ln ₂ Br ₃
M_2X_3	M ₆ X ₁₂	" "	Tb ₂ Br ₃
M ₅ X ₈	M ₆ X ₁₂	" "	Sc5Cl8, Gd5Br8, Tb5Br8
M ₄ X ₅	$M_{6}X_{12}$	" "	Er ₄ I ₅
M ₇ X ₁₀	$M_{6}X_{12}$	Двойные цепи	$\mathrm{Er}_{7}\mathrm{I}_{10}$
M ₇ X ₁₀	M ₆ X ₈	<u>, "</u> "	Sc7Cl10
M ₆ X ₇	$M_{6}X_{12}$	" "	Tb ₆ Br ₇ , Er ₆ I ₇
MX	M ₆ X ₈	Слои	ScCl, YCl, LnCl, LnBr

Соединения типа LnX – это своеобразные двумерные металлы, связь Ln– Ln в которых зависит от размера аниона: например, d(Tb–Tb) = 3.79 Å в TbCl и 3.84 Å в TbBr . Отсутствие монойодидов лантанидов поэтому может быть обусловлено чрезмерным удлинением связи Ln–Ln в этом случае.

Кроме М₆-кластеров, существуют, хотя и менее рапространены, М₅-группировки в соединениях типа M₂X, например Fe₂P; М₄-кластеры в Sc₃P₂, Zr₃As₂, Cr₃C₂. Если Mo₄I₇²⁺ является примером изолированного кластера типа M₄, то структура Ni₂Si состоит из каркаса M₄X₆-кластеров, соединённых через вершины. Как уже говорилось, центр кластера может быть занят не только металлом, но и неметаллом, например водородом, как в структуре HNb₆I₁₁. Если занят центр M_6X_8 -кластера, это приводит к перовскитной структуре, как в соединениях Mn_3GeC и Fe_3GeN . Полная заселённость всех октаэдрических центров установлена в Nb_5Ge_3B и Hf_5Sn_4 , имеющих структуру Ti_5Ga_4 .

Приведенные примеры относились к соединениям переходных металлов и первоначально считалось, что кластеры могут образовывать только эти элементы. Однако сегодня известны кластеры практически для всех элементов в виде поликатионов, полианионов или нейтральных молекул. Шнеринг [2.442] сопоставил распространённость кластеров среди элементов с энергиями атомизации их простых тел и нашёл определённый параллелизм: на зависимости энергии атомизации от номера элемента имеется два максимума: первый для W>Mo> U>Cr второй для C>Si>Ge>Sn. Именно эти элементы и дают наиболее прочные кластеры.

Элементы *а*-подгрупп первоначально в химии кластеров были представлены очень мало, но впоследствии положение изменилось. Было установлено, что щелочные металлы дают с фосфором соединения с кластерной структурой: M₃P, MP, M₄P₆, M₃P₇, M₃P₁₁, MP₅, MP₇, MP₁₁, MP₁₅, причём увеличение содержания фосфора в составе вещества сопровождается уменьшением его восприимчивости к минеральным кислотам, обусловленным повышением ковалентного характера связей за счёт развития системы P-P мостиков.

Известны соединения цинка, кадмия, ртути и индия, содержащие в своих структурах поликатионы: M_2^{2+} в ZnP₂ и CdP₂, In₂⁴⁺ и In₃⁵⁺ в In₆Se₇ и In₄Se₃. В кристаллических структурах галогенидов, халькогенидов и пниктидов ряда металлов содержатся кластерные ионы (включая и нулевого заряда) разной конфигурации [2.440,2.442].

N.Z	Форма кластера	Примеры
<u> 2 IVI</u>	Форма кластера	Z
4	Квадрат	Hg_4^{-} , Bi_4^{-} , $Te_4^{2^+}$
4	Тетраэдр	Tl_4^{8-} , Si_4^{4-} , Ge_4^{4-} , Pb_4^{4-}
-	Плоскость	Si_5^0 , Ge_5^0
5	Тригональная бипирамида	Sn_5^{2-} , Pb_5^{2-} , Bi_5^{3+}
6	Тригональная призма	Te ₆ ⁴⁺
7	1-шапочный октаэдр	Pb_7^{4-} , P_7^{3-} , As_7^{3-} , Sb_7^{3-}
8	Квадратная антипризма	Big ²⁺
	3-шапочная тригональная призма	Ge_9^{2-}, Bi_9^{5+}
У	1-шапочная квадратная антипризма	Ge9 ⁴⁻ , Sn9 ⁴⁻ , Pb9 ⁴⁻

Таблица 🕻	2.54	Кластернь	ие ионы
-----------	------	-----------	---------

В структурной химии кластеров большое внимание уделялось особенностям металлических связей [2.433,2.434]. Было замечено, что гомоядерные связи образуются металлами в низшем валентном состоянии, причём тяжёлые переходные металлы дают более прочные М-М связи, нежели лёгкие; так, в двуядерных галогенидных комплексах Cr, Mo, W длины связей соответственно равны 3.12, 2.66, 2.41 Å. Сокращение длин связей вызвано повышением кратности связи в этих комплексах, что позволило в случае Re реализовать полный ряд длин и кратностей связей: Re-Re 2.90, Re=Re 2.47, Re=Re 2.30 и Re=Re 2.22 Å. Однако обычно порядок связи в металлических кластерах ≈ 1 , причём стерическое взаимодействие лигандов заметно влияет на длину, а значит и на кратность металлической связи. В табл.2.55 приведены по данным [2.445], усреднённые порядки связей в ряде кластеров с разновеликими лигандами, иллюстрирующие сказанное.

Таблица 2.55 I	Порядки металлических	связей (1	n)	в кластер	ax
----------------	-----------------------	-----------	----	-----------	----

Кластер	n	Кластер	n
ZrCl	0.81	ZrBr	0.66
Zr_6Cl_{12}	0.88	Zr ₆ I ₁₂	0.68
Nb ₆ F ₁₅	1.10	Ta ₆ Cl ₁₅	0.69
Mo ₆ Cl ₈	1.05	Mo ₆ Br ₈	0.94
Ti ₂ S	0.77	Ti ₂ Se	0.55

Наряду с гомоядерными в кластерах существуют и гетероядерные металлические связи, образующие скелет, в который могут входить атомы двух, трёх и даже четырёх сортов, как например в комплексе FeCoMoWS(AsMe)₂Ph₂(CO)₇. Хотя межатомные расстояния в скелетной структуре кластера зависят от валентности металла, полярности связей с лигандами, их объёма и структуры, тем не менее большинство длин связей металлов в кластерах группируются вокруг некоторых средних значений. Результаты усреднения гомоядерных расстояний в металлических кластерах приведены в табл.2.56 по данным [2.403, 2.406, 2.408, 2.429, 2.439, 2.446-2.464].

Таблица 2.56	Длины гомоядерных металлических связей ((Å	.) E	класте	pax
--------------	--	----	------	--------	-----

Γ	Μ	d(MM)	M	d(M-M)	M	d(M- <u>M</u>)
	Cu	2.65	Sb	2.82	Ni	2.61
	Au	2.84	Bi	3.04	Ru	2.84
	Al	2.77	Cr	2.77	Rh	2.79
	Zr	3.17	Mo	2.76	Pd	2.72
	v	2.91	W	2.75	Os	2.87
	Nb	2.88	Mn	2.84	Ir	2.81
	Ta	2.80	Fe	2.63	Pt	2.69
			Co	2.50		

В последние годы возник новый подход к проблеме кластеров, а именно исследование мельчайших частиц чистых металлов, изолированных в матрицах из инертных газов. Так, были изучены атомные структуры кластеров серебра от бинарной молекулы до доменов размером в 17 Å [2.465] и установлено быстрое увеличение среднего координационного числа и длины связи Ag-Ag по мере увеличения объёма кластера:

N _c (Ag)	0.9	2.8	7.6*	12**
d(Ag-Ag)	2.47	2.51	2.86	2.87

*) для 17 Å, **) для чистого металла

Наиболее подробно были исследованы кластеры ртути. Эксперимент и

расчёты *ab initio* показали, что увеличение числа атомов в кластере (v) приводит к последовательной смене природы химической связи: в интервале $v = 2 \div 16$ связь носит ковалентный характер, при $v \ge 19$ идёт переход к ван-дер-ваальсовому типу [2.466], в области $v = 20 \div 70$ происходит уширение и перекрывание 6sи бр-орбиталий, что приводит к металлическому состоянию вещества [2.467].

Однако число атомов в кластере не является единственным параметром, определяющим его свойства. По мере увеличения числа атомов в кластере изменяется его структура с последовательной сменой координационных полиздров: гантель — треугольник — тетраэдр тригональная бипирамида — октаэдр кубооктаэдр — додекаэдр — икосаэдр, т.е. развитие кластеров идёт в направлении плотнейших упаковок [2.468]. Смена структур по мере накопления атомов в кластере происходит не скачком, а в определённом интервале составов и поэтому возможно появление «изомеров», например для 19 атомов реализованы структуры в виде двойного икосаэдра и 13-атомного кубооктаэдра с "шапками" над всеми 6 гранями [2.467]. Поэтому зависимость свойств кластеров от их объёмов носит не очень резкий характер, хотя на кривых «число атомов – свойства» чётко проявляются максимумы стабильности, соответствующие «магическим числам» [2.469].

В заключение данного параграфа отметим, что кластерные структуры установлены и для неметаллов, например у соединений фосфора [2.470], где обнаружены анионы P_7^{n-} , $P_6^{4-, 6-}$, $P_{10}^{-, 6-}$, P_{11}^{3-} , различные трубчатые структуры и пространственные конфигурации. Длина связи P-P равна 2.188 Å в кластерах типа M_3P_7 (M – щелочной металл), 2.197 Å в R_3P_7 (R – алкил) и 2.233 Å в кластерах типа M_3P_1 и R_3P_{11} , т.е.средняя длина связи P-P в полифосфидах равна 2.226 $\pm 2\%$. Для сравнения : в аллотропных модификациях фосфора длина связи равна 2.209 Å для белого, 2.215 Å для фиолетового и 2.228 Å для чёрного фосфора.

В полициклических фосфанах расстояния P–P также практически одинаковы : в (PPh)₆ 2.235, (PPh)₅ 2.211, (PCF₃)₅ 2.223, (PCF₃)₄ 2.213, (PHex)₄ 2.224, (PBu)₄ 2.212, (PBu)₃ 2.203 Å [2.471]. В металлоорганических комплексах, содержащих тройные фосфорные циклы, типа Cp₂M(PR)₃, где M = Zr, Hf и R = Ph, Cy, расстояние P–P в среднем равно 2.186 Å [2.472]. Наконец, в галогенофосфидах ртути (Hg₂P₃X₂) расстояния P–P равны 2.196 Å \pm 0.1% [2.473].

Постоянство длин связей P–P позволяет представить кластерные структуры состоящими из постоянных строительных единиц – гантелей и треугольников соответственно с 4 и 5 свободными валентностями [2.474].

2.8 Атомные радиусы

Аддитивный характер межатомных расстояний, обнаруженный в первых же структурных исследованиях, позволил Брэггу [2.475] представить длины связей в виде суммы атомных констант – радиусов. Позднее Слэйтер [2.476] на более полном экспериментальном материале (с квантово-химическими коррективами) составил таблицу атомных радиусов для всех элементов периодической системы; табл.2.58.

	(нижние строчки) радиусы элементов (А).									
Li	Be	В	C	N	0	F				
1.45	1.05	0.85	0.70	0.65	0.60	0.50				
1.55	1.12	0.98								
Na	Mg	Al	Si	Р	S	Cl				
1.80	1.50	1.25	1.10	1.00	1.00	1.00				
1.90	1.60	1.43	1.37	1.28	1.27	1.26				
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	
2.20	1.80	1.60	1.40	1.35	1.40	1.40	1.40	1.35	1.35	
2.35	1.97	1.62	1.47	1.34	1.28	1.27	1.26	1.25	1.24	
Cu	Zn	Ga	Ge	As	Se	Br				
1.35	1.35	1.30	1.25	1.15	1.15	1.15				
1.28	1.38	1.40	1.44	1.48	1.40	1.41				
	~						_	-		
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	
Rb 2.35	Sr 2.00	Y 1.80	Zr 1.55	Nb 1.45	Mo 1.45	Tc 1.35	Ru 1.30	Rh 1.35	Pd 1.40	
Rb 2.35 2.48	Sr 2.00 2.15	Y 1.80 1.80	Zr 1.55 1.60	Nb 1.45 1.46	Mo 1.45 1.39	Tc 1.35 1.36	Ru 1.30 1.34	Rh 1.35 1.34	Pd 1.40 1.37	
Rb 2.35 2.48 Ag	Sr 2.00 2.15 Cd	Y 1.80 1.80 In	Zr 1.55 1.60 Sn	Nb 1.45 1.46 Sb	Mo 1.45 1.39 Te	Tc 1.35 1.36 I	Ru 1.30 1.34	Rh 1.35 1.34	Pd 1.40 1.37	
Rb 2.35 2.48 Ag 1.60	Sr 2.00 2.15 Cd 1.55	Y 1.80 1.80 In 1.55	Zr 1.55 1.60 Sn 1.45	Nb 1.45 1.46 Sb 1.45	Mo 1.45 1.39 Te 1.40	Tc 1.35 1.36 I 1.40	Ru 1.30 1.34	Rh 1.35 1.34	Pd 1.40 1.37	
Rb 2.35 2.48 Ag 1.60 1.44	Sr 2.00 2.15 Cd 1.55 1.51	Y 1.80 1.80 In 1.55 1.58	Zr 1.55 1.60 Sn 1.45 1.62	Nb 1.45 1.46 Sb 1.45 1.66	Mo 1.45 1.39 Te 1.40 1.60	Tc 1.35 1.36 I 1.40 1.62	Ru 1.30 1.34	Rh 1.35 1.34	Pd 1.40 1.37	
Rb 2.35 2.48 Ag 1.60 1.44 Cs	Sr 2.00 2.15 Cd 1.55 1.51 Ba	Y 1.80 1.80 In 1.55 1.58 La	Zr 1.55 1.60 Sn 1.45 1.62 Hf	Nb 1.45 1.46 Sb 1.45 1.66 Ta	Mo 1.45 1.39 Te 1.40 1.60 W	Tc 1.35 1.36 I 1.40 1.62 Re	Ru 1.30 1.34 Os	Rh 1.35 1.34 Ir	Pd 1.40 1.37 Pt	
Rb 2.35 2.48 Ag 1.60 1.44 Cs 2.60	Sr 2.00 2.15 Cd 1.55 1.51 Ba 2.15	Y 1.80 1.80 In 1.55 1.58 La 1.95	Zr 1.55 1.60 Sn 1.45 1.62 Hf 1.55	Nb 1.45 1.46 Sb 1.45 1.66 Ta 1.45	Mo 1.45 1.39 Te 1.40 1.60 W 1.35	Tc 1.35 1.36 I 1.40 1.62 Re 1.35	Ru 1.30 1.34 Os 1.30	Rh 1.35 1.34 Ir 1.35	Pd 1.40 1.37 Pt 1.35	
Rb 2.35 2.48 Ag 1.60 1.44 Cs 2.60 2.67	Sr 2.00 2.15 Cd 1.55 1.51 Ba 2.15 2.21	Y 1.80 1.80 In 1.55 1.58 La 1.95 1.87	Zr 1.55 1.60 Sn 1.45 1.62 Hf 1.55 1.58	Nb 1.45 1.46 Sb 1.45 1.66 Ta 1.45 1.45	Mo 1.45 1.39 Te 1.40 1.60 W 1.35 1.39	Tc 1.35 1.36 I 1.40 1.62 Re 1.35 1.37	Ru 1.30 1.34 Os 1.30 1.35	Rh 1.35 1.34 Ir 1.35 1.35	Pd 1.40 1.37 Pt 1.35 1.38	
Rb 2.35 2.48 Ag 1.60 1.44 Cs 2.60 2.67 Au	Sr 2.00 2.15 Cd 1.55 1.51 Ba 2.15 2.21 Hg	Y 1.80 1.80 In 1.55 1.58 La 1.95 1.87 Tl	Zr 1.55 1.60 Sn 1.45 1.62 Hf 1.55 1.58 Pb	Nb 1.45 1.46 Sb 1.45 1.66 Ta 1.45 1.45 1.46 Bi	Mo 1.45 1.39 Te 1.40 1.60 W 1.35 1.39 Po	Tc 1.35 1.36 I 1.40 1.62 Re 1.35 1.37	Ru 1.30 1.34 Os 1.30 1.35	Rh 1.35 1.34 Ir 1.35 1.35	Pd 1.40 1.37 Pt 1.35 1.38	
Rb 2.35 2.48 Ag 1.60 1.44 Cs 2.60 2.67 Au 1.35	Sr 2.00 2.15 Cd 1.55 1.51 Ba 2.15 2.21 Hg 1.50	Y 1.80 1.80 In 1.55 1.58 La 1.95 1.87 Tl 1.90	Zr 1.55 1.60 Sn 1.45 1.62 Hf 1.55 1.58 Pb 1.80	Nb 1.45 1.46 Sb 1.45 1.66 Ta 1.45 1.45 1.46 Bi 1.60	Mo 1.45 1.39 Te 1.40 1.60 W 1.35 1.39 Po 1.90	Tc 1.35 1.36 I 1.40 1.62 Re 1.35 1.37	Ru 1.30 1.34 Os 1.30 1.35	Rh 1.35 1.34 Ir 1.35 1.35	Pd 1.40 1.37 Pt 1.35 1.38	

Таблица 2.58 Атомные (верхние строчки) и металлические

Атомные радиусы Брэгга-Слэйтера характеризуют элементы независимо от состава и структуры соединений, в которые они входят. Однако по мере накопления экспериментальных данных было установлено, что влияние структуры и природы связи очень существенно и атомные радиусы для ковалентных веществ $c N_c = 1 \div 4$ значительно меньше радиусов металлов с $N_c = 8$ или 12.

Причина увеличения атомного радиуса элемента при увеличении координационного числа заключается в уменьшении энергии связи внешних электронов с ядром при переходе от изолированных атомов к двухатомным молекулам, многоатомным кластерам и затем к массивным металлам, т.е. по мере увеличения N_c атома (см.Главу 1). Поскольку энергия ионизации атома $E = a (Z^*/n^*)^2$

а радиус

$$r = c (n^*)^2 / Z^*$$
 (2.14)

(2.13)

ясно, что уменьшение энергии ионизации при увеличении координационного числа должно приводить к "расширению" атома.

С позиций квантовой химии этот эффект можно объяснить использованием атомом при увеличении его N_c вакантных ранее орбиталей. Эти дополнительные связи вокруг атома можно рассматривать как внешнее экранирование

ядра дополнительной оболочкой. Такое рассмотрение приводит к следующему уменьшению эффективного заряда ядра

$$\Delta Z^* = s (N_c - v) / N_c$$
 (2.15)

где s - константа внешнего экранирования, равная 0.15. Расчёты относительного изменения атомного радиуса при изменении N_c от 1 до 12 при v = 1 по уравнению (2.15) дают следующие результаты :

> Nc 2 1 3 4 12 1.000 1.081 1.111 1.127 1.143 1.151 1.159 r/r_{o}

Первая эмпирическая система металлических радиусов была предложена Гольдшмидтом [2.477]. В качестве стандартной структуры была выбрана плотнейшая упаковка с $N_c = 12$, для $N_c \neq 12$ вводились поправки на основе изменения межатомных расстояний при полиморфном превращении элементов. Кристаллохимическая последовательность структур элементов с возрастанием координаци-OHHELX ЧИСЕЛ (B СКОБКАХ): A9 (3) \rightarrow A4 (4) \rightarrow A5 (6) \rightarrow A2 (8) \rightarrow A1 (12) даёт увеличение длин связей: $1.00 \rightarrow 1.02 \rightarrow 1.09 \rightarrow 1.11 \rightarrow 1.14$, достаточно близкое к приведенным выше оценкам. Заметим, что одновременно с ростом N_c и межатомных расстояний в том же ряду повышается плотность заполнения пространства: $0.17 \rightarrow 0.34 \rightarrow 0.56 \rightarrow 0.68 \rightarrow 0.74$. Таким образом, налицо противоречие : при увеличении N_c атомы раздвигаются, но оказываются более плотно упакованными. В действительности наряду с раздвижкой ближайших соседей происходит сближение следующих слоёв атомов, причём более значительное: обозначив ближайшее расстояние за 1, получаем для следующих атомов величины 2.362 (А9), 1.633 (А4), 1.366 (А5), 1.155 (А2) и 1.000 (А1) [2.478]; в итоге происходит суммарное сокращение межатомных расстояний. Заметим также, что удлинение связей при увеличении N_c в простых телах происходит в меньшей степени, чем в случае бинарных соединений, из-за отсутствия изменения поляр-

ности связи в данном случае. В нижих строчках табл.2.58 приведена полная система металлических радиусов остальных элементов для N_c = 12 по данным Полинга [2.479.2.480] и автора [2.481]. Как можно видеть, металлические радиусы уменьшаются слева направо в периодах вследствие роста эффективных зарядов ядер (табл.1.6).

Металлические радиусы для других координационных чисел Полинг вычислял по уравнению (2.7) с константой A = 0.6 [2.479], а позднее [2.480] по его модификации:

$$d_n = d_1 - A\log \{ n [1 + B(v-1)] \}$$
(2.16)

A = 0.7, B = 0.064, n – кратность связи, равная v / N_c, d₁ – длина одигле нарной (когда v = N_c) и d_n – длина п-кратной связи. Значения v атомов металлов а-подгрупп принимаются равными номеру группы, кроме 7,8-групп, для которых v = 6. В случае металлов *b*-подгрупп принимаются следующие значения: для 1*b* v = 5.5, 2b 4.5, 3b 3.5 (для Tl v = 2), 4b v = 4, кроме Pb, для которого v = 2. По поводу этих значений валентностей атомов имеются критические замечания, однако именно с их помощью получаются d1, наиболее близкие к экспериментальным длинам металлических связей.

В табл.2.59 даны значения металлических радиусов актинидов по Захари-

азену [2.482] для разных чисел электронов на их внешней оболочке.

) (Валентность						
металл	2	3	4	5	6	7	
Ra	2.293	-	-	-	-	-	
Ac	-	1.977	-	-	-	-	
Th	-	-	1.798	-	-	-	
Pa	-	-	1.767	1.642	1.542	-	
U	-	1.90	1.748	1.622	1.534	1.503	
Np	-	1.88	1.734	1.610	1.530	1.499	
Pu	-	1.87	1.723	1.601	1.526	-	
Am	-	1.86	1.715	1.594	-	•	
Cm	-	1.86	1.709	-	-	-	
Bk	-	1.84	1.704	-	-	-	
Cf	2.03	1.83	1.689	-	-	-	
Es	2.01	1.81	1.679	-	-	•	

Таблица 2.59 Металлические радиусы (Å) актинидов

Вслед за металлическими радиусами естественно перейти к ковалентным параметрам, поскольку металлическая и ковалентная связи основаны на обобщении валентных электронов (по этой причине металлическую связь называют иногда ненаправленной ковалентной). Однако перед рассмотрением экспериментального материала следует уточнить терминологию. Слово "радиус", строго говоря, характеризует сферу. В случае металлических структур с координационными полиэдрами в виде куба или икосаэдра конфигурация атома приближённо отвечает этому требованию. В молекуле же А₂ ковалентным радиусом называется половина длины связи А-А. Как будет показано ниже, периферический (вдв) размер атома А гораздо больше. Поэтому понятие "радиус" в случае ковалентной связи весьма условно. Тем не менее, этот термин в структурной химии прижился и установлена его зависимость от координационного числа (кратности связи). Так, половина расстояний в двухатомных молекулах с о-связью, т.е. для атома с N_c = 1, называется нормальным ковалентным радиусом, половина длины связи в структуре алмаза - тетраэдрическим, te (для элементов 4 группы эти величины совпадают), в случае структур типа β-Sn - октаэдрическим, ос, ковалентным радиусом.

Системы тетраэдрических и октаэдрических ковалентных радиусов были впервые даны Хагтинсом [2.483] и Полингом [2.484]. Величины предложенных ими тетраэдрических радиусов неметаллов равны или даже несколько меньше нормальных ковалентных радиусов, а металлов – больше таковых. Качественно такое различие в изменении размеров металлов и неметаллов при повышении N_c можно понять, учитывая параллелизм в изменении длины и электронной плотности гомоядерной связи. Поскольку у атомов металлов число внешних электронов < 4, а у неметаллов \geq 4, переход N_c=1 \rightarrow N_c=4 в первом случае сопровождается уменьшением электронной плотности, во втором – она практически не изменяшется. Вначале тетраэдрические и октаэдрические радиусы применялись к разным объектам: г _{te} к соединениям металлов *b*-подгрупп (а также Be), для которых характерны тетраэдрические структуры, а г _{ос} к производным *a*-элементов (кроме Be), которые кристаллизуются в структурах с N_c = 6. Однако в связи с успехами синтетической и структурной химии появи-лась потребность в определении г _{te} для *a*-элементов и г _{ос} для элементов *b*-подгрупп. Такая работа была выполнена Ван Фехтеном и Филлипсом [2.485], которые вычислили г _{te} и г _{ос} для одинаковых элементов. Радиусы элементов в рядах Si \rightarrow Cl, Cu \rightarrow Br, Ag \rightarrow I оказались одинаковыми, что авторы объяснили компенсацией возрастающей величины Z* усилением взаимного отталкивания электронных пар в валентной оболочке атома по мере увеличения номера группы в периоде.

Рассмотрим с этих позиций особенности ковалентных связей F–F, О–О и N–N. Экспериментальное исследование электронной плотности связи О–О [2.486] и теоретическое F–F [2.487] показали отсутствие максимума электронной плотности на линии связи атомов и, наоборот, её избыток – на их периферии. Этот факт соответствует антисвязывающему характеру валентных орбиталей, о чём говорит и резкое повышение прочности связи в молекуле F₂ при её положительной ионизации [2.488]. В работе [2.489] показано, что учёт данной особенности приводит к значениям нормальных ковалентных радиусов F и O, равным 0.77 Å, а для N 0.76 Å, что практически совпадает с радиусом углерода в алмазе, как и в случае элементов III, IV и V коротких периодов, рассмотренных в статье Ван Фехтена и Филлипса.

Вместе с тем, значения тетраэдрических радиусов по Полингу и Филлипсу существенно различаются . Так, для Cl, Br, I они соответственно равны 0.99 и 1.127, 1.11 и 1.225, 1.28 и 1.405 Å, а для Mg, Zn, Cd соответственно 1.40 и 1.301, 1.31 и 1.225, 1.48 и 1.405 Å. Поэтому вопрос о создании обоснованной системы ковалентных радиусов остаётся актуальеным.

Заметим, что системы атомных радиусов создавались с целью воспроизведения длины связей, для чего часто использовались аддитивные расчёты, что пригодно только в случае ковалентных веществ. Если же связь отклоняется от ковалентного типа, то необходимо вводить соответствующие поправки. Шомакер и Стивенсоп [2.490] были первыми, кто обратили на это внимание и предложили вычислять длины гетероядерных связей (d_{AB}) по уравнению

$$d_{AB} = r_A + r_B - a\Delta\chi_{AB} \qquad (2.17)$$

где *a* = 0.09 и г_{А,В} – ковалентные радиусы атомов А и В. Аналогичное уравнение было предложено в статье [2.491]. В [2.492] уравнение (2.17) было преобразовано к виду

$$\mathbf{d}_{\mathbf{A}\mathbf{B}} = \mathbf{r}_{\mathbf{A}} + \mathbf{r}_{\mathbf{B}} - a\Delta\chi_{\mathbf{A}\mathbf{B}}^{\mathbf{m}} \qquad (2.18)$$

где a = 0.085 и m = 1.4. Наконец, Митчелл [2.493] предложил учитывать также и кратность (n) связи :

 $\mathbf{d}_{AB} = \mathbf{r}_{A} + \mathbf{r}_{B} - a\Delta\chi_{AB} - b\log n \qquad (2.19)$

где a изменяется от 0.02 до 0.08 для разных элементов, b = 0.8 для всех связей.

Эти уравнения объясняют, почему атомные радиусы элементов, образующих наиболее полярные связи (F, O, N), меньше их ковалентных аналогов. Отсюда следует альтернатива : либо использовать атомные радиусы, сумма которых максимально соответствует длине связи, либо – ковалентные радиусы и по их отклонению от длины реальной связи судить об её характере. Часто между атомными и ковалентными радиусами не делают различий, поскольку для элементоворганогенов с $\chi = 2.5 \pm 0.5$ они практически совпадают. Но при переходе к металлам с низкими ЭО, образующими с типичными неметаллами полярные связи, ситуация существенно меняется и поэтому в предложенных различными авторами системах нормальных ковалентных радиусов [2.69, 2.195,2.352, 2.494-2.497] наблюдается сильный разброс значений для одинаковых элементов в зависимости от использованной базы данных или сделанных при расчётах допущениях.

В наших работах [2.194, 2.196, 2.496] выполнен анализ всего имеющегося экспериментального материала и определены ковалентные радиусы элементов непосредственно из межатомных расстояний в гомоядерных молекулах, простых телах или соединениях, содержащих радикалы А2, а аддитивным методом – только из данных по алкильным производным и гидридам, поскольку СН₃ и водород имеют минимальные ЭО из всех одновалентных лигандов. Тем не менее, при аддитивных расчётах надо иметь в виду, что полярная связь сокращает межатомные расстояния, см.уравнения (2.14) и (2.15). Учитывая, что ковалентные радиусы углерода (0.767 Å) и водорода (0.371 Å) меньше, чем радиусы металлов и в полярной связи они несут на себе отрицательный заряд, компенсирующий уменьшение их размеров, всё сокращение длины связи следует отнести на счёт металла. Тогда их ковалентные радиусы будут равны разности длин связей М-СН3 или С-Н и г(С) или г(Н) плюс поправка на полярность связи по Шомакеру-Стивенсону или Блому-Халанду. Экспериментальные данные, приведенные в [2.498] и таблицах 2.2, 2.3, 2.15, показывают, что при использовании поправки Шомакера-Стивенсона и ЭО, взятых из табл. 1.30, различие в результатах вычислений радиусов металлов из длин их связей с алкилами и водородом несколько меньше, особенно для щелочных металлов, чем в случае применения поправки Блома-Халанда. Помимо аддитивных расчётов для определения ковалентных радиусов использовались и межатомные расстояния в молекулах или радикалах А₂ с σ-связями, а также величины единичных радиусов по Полингу [2.479].

В табл.2.60 в верхних строчках приведены усреднённые (по данным для молекул A₂ и одинарным связям A-H и A-CH₃) значения нормальных ковалентных радиусов элементов (r₁). Заметим, что в большинстве случаев аддитивные величины радиусов хорошо согласуются с экспериментальными значениями, определёнными из длин связей A-A, кроме случая натрия, где аддитивный радиус превышает экспериментальный более чем на 0.1 Å. Это обстоятельство можно объяснить тем, что связи натрия являются гибридными с участием как s-, так и р-электронов (ковалентный радиус для р-электронов на 0.25 Å больше радиуса для s-состояния [2.497]). Что касается тетраэдрических (te) и октаэдрических (ос) радиусов металлов, то они обычно вычисляются из нормальных ковалентных радиусов прибавлением поправки на увеличение координационного числа, либо вычисляются по аддитивности.

Увеличение ковалентного радиуса атома при увеличении числа лигандов вполне понятно с точки зрения сохранения электронной плотности: при неизменной валентности количество связевых электронов атома является инвариантом и следовательно при увеличении $N_{\rm c}$ атомы должны раздвинуться, чтобы суммарное перекрывание внешних орбиталей (электронное облако связи) осталось тем же. Исходя из этого принципа, можно вычислить тетраэдрические и октаэдрические радиусы чисто геометрическим путём .

Представим образование двухатомной связи А–А как результат перекрывания валентных орбиталей двух изолированных атомов А, расположенных на расстоянии, равном сумме ковалентных радиусов (рис.7). Обозначив радиус изолированного атома через R, а ковалентный – через г, получаем, что область перекрывания двух атомных сфер будет равна :

Рис.7 Область перекрывания атомных сфер

Таблица 2.60 Нормальные (верхние строчки) и кристаллические (нижние строчки) ковалентные радиусы элементов (Å) (для H: r = 0.37, r te = 0.42 Å)

Li Be B C N O F 1.34 0.98 0.85 0.77 0.73 0.73 0.71 1.56 1.07 0.89 0.83 0.77 0.80 0.80 Na Mg A1 Si P S C1	
1.34 0.98 0.85 0.77 0.73 0.73 0.71 1.56 1.07 0.89 0.83 0.77 0.80 0.80 Na Mg Al Si P S C1	
1.56 1.07 0.89 0.83 0.77 0.80 0.80 Na Mg Al Si P S C1	
Na Mg Al Si P S Cl	
1.65 1.42 1.29 1.18 1.11 1.03 0.99	
1.85 1.56 1.34 1.25 1.15 1.09 1.08	
K Ca Sc Ti V Cr Mn Fe Co	Ni
2.00 1.73 1.44 1.35 1.31 1.32 1.28 1.31 1.24	1.20
2.22 1.87 1.54 1.40 1.40 1.41 1.37 1.44 1.37	1.35
Cu Zn Ga Ge As Se Br	
1.12 1.23 1.25 1.22 1.23 1.19 1.14	
1.32 1.33 1.29 1.29 1.27 1.25 1.23	
Rb Sr Y Zr Nb Mo Tc Ru Rh	Pd
2.12 1.89 1.62 1.53 1.36 1.33 1.34 1.31 1.27	1.30
2.12 1.89 1.62 1.53 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32	1.30 1.36
2.12 1.89 1.62 1.53 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I I	1.30
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I I 1.27 1.36 1.45 1.40 1.43 1.40 1.33 .	1.30
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I 1.27 1.36 1.45 1.40 1.43 1.40 1.33 1.46 1.46 1.49 1.46 1.46 1.46 1.42	1.30
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I	1.30 1.36 Pt
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I <thi< th=""> I <thi< th=""> <thi< th=""></thi<></thi<></thi<>	1.30 1.36 Pt 1.30
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I I I.33 1.40 1.33 I.37 1.32 Ag Cd In Sn Sb Te I I I I.40 I.33 I.40 I.40 I.40 I.40 I.40 I.40 I.40 I.40 I.40 I.41 I.40 I.41 I.40 I.41 I.41 I.41 I.41 I.41 I.41 I.41 <	1.30 1.36 Pt 1.30 1.36
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I I I.33 1.40 1.33 1.37 1.32 Ag Cd In Sn Sb Te I I I.46 1.40 1.33 I.40 1.33 I.40 I.33 I.40 I.40 I.40 I.40 I.40 I.41	1.30 1.36 Pt 1.30 1.36
2.12 1.89 1.62 1.33 1.36 1.33 1.34 1.31 1.27 2.35 2.02 1.71 1.59 1.46 1.39 1.40 1.37 1.32 Ag Cd In Sn Sb Te I I 1.37 1.32 Ag Cd In Sn Sb Te I I I I I.33 I.40 1.33 I.37 I.32 Ag Cd In Sn Sb Te I I I I I I.33 I.40 I.33 I.34 I.37 I.32 Ag Cd I.45 1.40 1.43 I.40 I.33 I.40 I.33 I.40 I.33 I.40 I.33 I.40 I.33 I.40 I.33 I.40 I.40 I.40 I.40 I.41	1.30 1.36 Pt 1.30 1.36

$$\Delta V_1 = \frac{2}{3} \pi (R - r)^2 (2R + r) \qquad (2.20)$$

где цифра 1 означает число связей. Если число лигандов будет расти, а количество валентных электронов атомов останется постоянным, то, предполагая неизменность электрон-ной плотности атома на его периферии, получаем перераспределение валентного облака в результате структурных превращений:

$\Delta V_1 = 2\Delta V_2 = 3\Delta V_3 \dots \qquad (2.21)$

Экспериментальные данные показывают, что при таких превращениях удлинение связей внутри молекулы вызывает уменьшение размера периферической части атома. Поэтому уравнение (2.21) можно переписать в виде:

 $(R_1 - r_1)^2 (2R_1 + r_1) = n (R_n - r_n)^2 (2R_n + r_n)$ (2.22),

где числовые индексы при радиусах указывают на количество лигандов. Это выражение справедливо для одновалентных атомов; для поливалентных элементов вместо числа связей (n) должно стоять отношение N = n / v. Если известно изменение R при изменении усилия связи, можно определить r п. Предположим, в качестве первого приближения, что R будет уменьшаться пропорционально увеличению r, т.e. $R_N = \gamma R_1$, где $\gamma = r_N / (2r_N - r_1)$. Тогда расчётная формула приобретает вид:

 $(R_1 - r_1)^2 (2R_1 + r_1) = N (\gamma R_1 - r_N)^2 (2\gamma R_1 + r_N)$ (2.23) Следовательно, зная r_1 и R_1 , можно вычислить величины r_N для всех элементов. Результаты расчётов r_{te} и r_{oc} элементов *a*-подгрупп по кристаллографическим радиусам R_1 из табл.2.62 и нормальным ковалентным радиусам r_1 , приведенным в табл.2.60, даны в нижних строчках последней таблицы (для *a*-элементов, кроме Ве, r_{oc} , для *b*-элементов и Ве r_{te}).

В случае элементов *b*-подгрупп при образовании ими кристаллических веществ с N_c = 4 или 6, помимо нормальных химических связей, имеется и донорно-акцепторное взаимодействие с участием изолированных электронов на внешней оболочке. Такое взаимодействие можно охарактеризовать вкладом [2.499]:

$$\Delta q = 2EA / (IP + EA) \qquad (2.24)$$

который добавляется к нормальной валентности (V) изолированного атома и превращает её в соответствующее значение для координационного кристалла (V_{cr}):

 $v_{cr} = [v + \Delta q (N_c - v)] / v$ (2.25) Поскольку в правильном тетраэдре или октаэдре все связи внутри коор-

теграздре или октаздре все связи внутри коор-

динационного полиэдра одинаковы, электронная плотность в результате валентного и донорно-акцепторного взаимодействия усредняется, что отражается делением суммарной валентности атома на v. Умножив v_{cr} на левую часть уравнения (2.23), можно рассчитать изменение радиуса атома с учётом не только валентных, но и изолированных электронов. Аналогичным образом можно вычислить ковалентный радиус атома в закисном состоянии, когда на его внешней оболочке остаются изолированные электроны, например Tl¹, Sb^{III}, Bi^{III} и т.д. Именно так были вычислены тетраэдрические и октаэдрические ковалентные радиусы, представленные в табл.2.60, которые, как видно, находятся между величинами, полученными методом Полинга и Брауна-Олтермана (для металлов) или Полинга и Филлипса (для неметаллов). Тетраэдрические и октаэдрические радиусы галогенов различаются очень мало: $r_{oc} > r_{te}$ всего на 0.01 Å.

Известны также ковалентные радиусы атомов в кратных связях, определённые из длин π -связей в гомоядерных молекулах A_2 или их фрагментов в кристаллических соединениях, усреднённые значения которых из [2.195,2.197,2.496, 2.497,2.500,2.501] даны в табл.2.61.

Таблица 2.61 Ковалентные радиусы атомов (Å) с кратными связями

A	r =	r 🔳	A	r =	Гщ	A	r_	r =
В	0.76	0.68	V		1.19	F	0.54	
Al	1.28		Nb	1.36		CI	0.89	
Ga	1.13	1.03	Ta	1.37		Br	1.04	
C	0.67	0.60	Cr	1.24	1.11	I	1.23	
Si	1.07	1.00	Mo		1.13	Fe	1.17	
Ge	1.13	1.06	W	1.26	1.12	Co	1.16	
Sn	1.30		0	0.605		Ni	1.14	
Ti	1.23	0.97	S	0.94	0.87	Ru	1.17	
N	0.625	0.55	Se	1.08		Rh	1.20	
P	1.00	0.93	Te	1.28		Pd	1.21	
As	1.11	1.05	Mn	1.22		Os	1.21	1.08
Sb	1.31	1.17	Tc		1.09	Ir	1.22	
Bi	1.41	1.33	Re	1.19	1.13	Pt	1.22	

Одновременно с уменьшением радиуса атома в направлении кратной связи происходит увеличение размера того же атома в направлении о-связи. Так, по данным [2.497] радиус углерода в двойной и тройной связи равен соответственно 0.664 и 0.617 Å, а в tro- и dio- связях 0.747 и 0.710 Å. Ещё больше увеличивается размер атома в направлении противоположном одинарной связи, когда он ограничен только отталкиванием замкнутых оболочек атомов соседних молекул. Периферический размер атома, т.е. половина кратчайшего межмолекулярного расстояния получил название ван-дер-ваальсова радиуса, г_w.

Это понятие введено в науку в 1932 г. Магатом [2.502] и Маком [2.503], хотя сам термин позднее предложил Полинг [2.479]. Величины вдв радиусов вначале определялись, главным образом, на материале структурной органической химии. Наиболее значимые работы в этом направлении принадлежат Полингу [2.479], Китайгородскому [2.504,2.505], Бонди [2.506], Гавезотти [2.507], Найбургу [2.508], Зефирову [2.509], несколько статей на эту тему опубликовал автор настоящей книги. В итоге проведенных исследований было установлено, что кристаллографические г_w являются не константами, а статистическими величинами, наиболее часто встречающимися среди межмолекулярных контактов, см. например [2.508, 2.509, 2.510]. Однако, поскольку на межмолекулярное расстояние могут влиять различные факторы, в том числе ион-дипольное и донорноакцепторное взаимодействие, водородные связи, наличие на атомах эффективных положительных зарядов, существенно сокращающих контакты, формальный учёт всех расстояний в структурах может дать искажённые значения вдв радиусов (см.[2.509]).

Помимо перечисленных ограничений, из-за стремления системы к минимуму свободной энергии при упаковке молекул в кристаллическом пространстве и относительной «мягкости» периферических частей молекулы, о чём подробнее будет сказано ниже, возможны перекрывание и деформация вдв сфер, что также приводит к занижению радиусов атомов. В работах Зефирова было показано, что длина межмолекулярных контактов между разноимёнными атомами лучше соответствует удвоенному среднегеометрическому значению вдв радиусов, чем их сумме. Это предложение находится в согласии со среднегеометрическим способом вычисления таких характеристик как потенциалы ионизации, энергии ковалентных связей, волновых функций (см. Главу 1). Зефировым и Зорким [2.511] были также рассмотрено сокращение реальных межмолекулярных расстояний по сравнению с аддитивным значением; на болшом числе структур было показано, что оно составляет 0.15 Å для контактов без участия атомов водорода и 0.30 Å для контактов с их участием.

Эффект сокращения межмолекулярного расстояния галоген...галоген, возрастающий от фтора к йоду, в органической кристаллохимии хорошо известен. В обзорах [2.420, 2.421, 2.423] были продемонстрированы примеры практически непрерывного изменения межмолекулярных расстояний от вдв до ковалентного значений. Поэтому ковалентные и вдв радиусы по существу являются реперными точками в этой шкале непрерывных переходов.

Следует заметить, что для элементов-органогенов значения вдв радиусов за полвека, прошедшие после выхода в свет 1-го издания «Природы химической связи» Полинга, изменились очень мало:

	Н	F	Cl	Br	I	0	S	Ν	С
Полинг (1939)	1.2	1.35	1.80	1.95	2.15	1.40	1.85	1.5	1.70 Å
Бонди (1964)	1.20	1.47	1.75	1.85	1.98	1.52	1.80	1.55	1.70 Å
Зефиров (1974)	1.16	1.40	1.90	1.97	2.14	1.29	1.84	1.50	1.71 Å
Гавезотти (1983-1999)	1.17	1.35	1.80	1.95	2.10	1.40	1.85	1.50	1.70 Å
**									

Что касается металлов, для которых молекулярные структуры (с открытым для контактов атомом) нехарактерны, то здесь до последнего времени информации было мало и она носила противоречивый характер. Поэтому оценки г_w металлов делались на основе косвенных данных [2.506], в частности по соотношению Полинга - Слэйтера

 $r_w = r_c + 0.8 \text{ Å}$ (2.26)

По этому уравнению с привлечением кристаллохимических и квантовомеханических соображений были вычислены величины вдв радиусов всех элементов периодической системы [2.496], что однако не сняло вопрос об экспериментальном определении г_w металлов. Выход из сложившегося положения пришёл с неожиданной стороны.

В последнии два десятилетия появилась структурная информация о газообразных молекулах типа Rg.A, где Rg – атом инертного (редкого) газа, а A – металл или неметалл, которые являются идеальными ван-дер-ваальсовыми образованиями . Анализ межатомных расстояний в них показал, что принцип аддитивности здесь выполняется при учёте поляризационного взаимодействия компонентов молекулы [2.512,2.160]:

$$\mathbf{d}_{\mathbf{w}}(\mathbf{A}\mathbf{B}) = \mathbf{r}_{\mathbf{w}}(\mathbf{A}) + \mathbf{r}_{\mathbf{w}}(\mathbf{B}) + \Delta \mathbf{r}_{\mathbf{w}}$$
(2.27)

где

$$\Delta \mathbf{r}_{\mathbf{w}} = a \left[\left(\alpha_{\mathrm{A}} - \alpha_{\mathrm{B}} \right) / \alpha_{\mathrm{A}} \right]^{2/3}$$
 (2.28)

Здесь a = 0.045, $\alpha_{A,B}$ – электронные поляризуемости атомов или молекул A и B, причём в качестве B выбирается компонент, имеющий наименьшую поляризуемость. Используя межатомные расстояния в вдв молекулах, по уравнению (2.27) были вычислены r_w водорода, кислорода, азота, галогенов и ряда металлов, которые оказались близки к радиусам тех же атомов в изолированном состоянии [2.513].

Последние радиусы принято называть равновесными (r^e_w), поскольку они теоретически выведены, исходя из условия минимума энергии вдв взаимодействия двух изолированных атомов, т.е. находящихся на равновесном расстоянии. В принципе, равновесные радиусы являются параметрами атом-атомных потенциалов [2.504,2.505,2.514] и обычно не рассматриваются как реальные характеристики атомов, хотя таблица r^e_w Аллинджера и др. [2.513] построена путём экстраполяции вдв радиусов атомов редких газов на основе закономерного изменения эффективных зарядов ядер элементов в периодической системе, т.е. имеет вполне реальное обоснование. Главное же – это совпадение r^e_w и значений радиусов атомов в структурах молекул Rg.A [2.512], что подтверждает их объективное значение.

Равновесные вдв радиусы превышают кристаллографические на 10-30% [2.514], что объяснялось большей энергией сцепления из-за многочастичных взаимодействий молекул в кристаллическом состоянии [2.511]. Однако сопоставление межатомных расстояний в кристаллах редких газов и молекулах Rg₂ показало, что увеличение энергии вдв взаимодействия на порядок не влияет на величину r_w [2.512,2.160] (новейшие данные по межатомным расстояниям в кристаллическом Кг ещё ближе к длине связи в молекуле Kr₂ [2.515]). Последнее обстоятельство прямо вытекает из аддитивного характера сил ван дер Ваальса: длина и прочность каждой вдв связи постоянны. Чем же тогда обусловлено уменьшение вдв радиусов при конденсации молекул?

В работе [2.208] показано, что величина вдв радиуса атома в гетероядерной молекуле является функцией его эффективного заряда: если заряд на атоме металла равен нулю – получаем равновесный радиус, если е* > 0, то т.н. кристаллографический . В случае неметаллов наличие отрицательных эффективных зарядов не влияет на величину вдв радиуса, поскольку $r_w \approx r_{an}$, как было показано Полингом [2.479]. Интересно, что из модели перекрывающихся атомных сфер в тетраэдрической структуре и среднего значения ковалентного радиуса неметаллов (~ 1.2 Å) вытекает соотношение (2.26) [2.208].

Влияние эффективного заряда на величину вдв радиуса хорошо видно на примере атома водорода, входящего в состав газообразных вдв комплексов (Rg.HX и Rg.CH₄) и кристаллических HX. В работе [2.516] вычислены следующие r_w(H) из структурных данных для этих молекул

	HO	HCI	HBr	CH₄	H_2	
кристалл:	0.90	0.75	0.86	1.04	1.52	Å
газовая фаза :	0.92	1.02	1.12	1.01	1.52	Å

из которых видно, что вдв радиус закономерно уменьшается по мере роста положительного заряда на атоме водорода, тогда как агрегатное состояние не оказывает определяющего влияния.

Уравнение (2.23) использовано в работе [2.517] для вычислений вдв радиусов атомов из структур чистых металлов в хорошем согласии с кристаллохимическими значениями. В [2.426] проанализированы внутримолекулярные контактные радиусы (половина кратчайших расстояний между лигандами внутри молекул или комплексных ионов) и показано, что в β -Sn и в бинарных веществах структурного типа ZnS, содержащих элементы 5 периода, а также в металлоценовых молекулах эти радиусы близки к вдв радиусам металлов. Наконец, в [2.518] для оценки вдв радиусов из длин и энергий связей использована известная функция Морзе, которая хорошо передаёт зависимость длины связи от её прочности, особенно в предельных случаях. Результаты расчётов удовлетворительно согласуются с независимыми определениями вдв радиусов.

Таблица 2.62 Равновесные [2.423,2.513] (верхние строчки,) и кристаллографические [2.208,2.426,2.517, 2.519] (нижние строчки) ван дер Ваальсовы радиусы

				элеме	нтов(А)				
Li	Be	В	C	N	0	F	Ne		
2.46	2.14	2.06	1.97	1.88	1.78	1.68	1.544		
2.2	1.85	1.8	1.7	1.65	1.55	1.55	1.578		
Na	Mg	Al	Si	P	S	Cl	Ar	1	
2.68	2.41	2.34	2.27	2.20	2.13	2.05	1.880		
2.4	2.2	2.1	2.1	1.95	1.85	1.8	1.874		
K	Ca	Sc	Ti	V	Cr	Mn	Fe (Co	Ni
3.07	2.79	2.59	2.37	2.27	2.23	2.22	2.21 2.	.21	2.20
2.8	2.5	2.3	2.2	2.05	2.05	2.05	2.0 2.	.0	2.0
Cu	Zn	Ga	Ge	As	Se	Br	Kr		
2.24	2.27	2.44	2.42	2.34	2.27	2.20	2.006		
2.1	2.1	2.1	2.1	2.1	1.9	1.9	2.050		
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru I	Rh	Pd
3.23	2.98	2.69	2.52	2.41	2.37	2.34	2.32 2.	.32	2.35
2.9	2.6	2.4	2.3	2.2	2.15	2.1	2.1 2.	.05	2.1
Ag	Cd	In	Sn	Sb	Te	I	Xe		
2.41	2.48	2.62	2.57	2.50	2.42	2.34	2.181		
2.2	2.2	2.3	2.2	2.25	2.1	2.1	2.231		
Cs	Ba	La	Hf	Ta	W	Re	Os I	r	Pt
3.42	3.05	2.76	2.51	2.41	2.37	2.35	2.33 2.	34	2.37
3.05	2.8	2.55	2.3	2.2	2.15	2.1	2.05 2.	05	2.1
Au	Hg	TI	Pb	Bi	Th	U	Rn		
2.41	2.51	2.57	2.72	2.64	2.72	2.50	2.24		
2.1	2.2	2.3	2.3	2.35	2.5	2.4			

Кристаллографические радиусы являются не только статистически усреднёнными, но и в определённой степени идеализированными характеристиками, т.к. в реальных молекулах вдв поверхность атомов отклоняется от сферы и напоминает скорее эллипсоид с большим радиусом перпендикулярно направлению химической связи (r^t_w) и малым (r^l_w) - вдоль этого направления. Причина заключается в смещении электронной плотности с периферической части валентной орбитали в область химической связи. На электронную причину вдв анизотропии впервые указали Китайгородский с сотр.[2.520] при объяснении обнаруженной ими в кристаллической структуре йода зависимости межмолекулярных расстояний от угла к направлению химической связи. В кристаллических структурах анизотропию вдв радиусов подробно исследовали Бент [2.420] и Найбург с сотр. [2.508], а в газообразных молекулах – теоретическими методами в работах [2.521-2.523], и на основе экспериментальных данных – автором [2.516, 2.524]. В табл.2.63 приведены значения анизотропных вдв радиусов атомов в молекулах А2, в табл. 2.64 аналогичные характеристики для органических соединений по данным [2.508,2.524].

Таблица 2.63 Анизотропные ван дер Ваальсовы радиусы (Å) в гомоядерных молекулах

]	Газовая фаз	a	Твёрдое тело			
A ₂	r_t	r_i	Δr	r_i	r	Δr	
H ₂	1.70	1.52	0.18		1.52		
02	1.94	1.77	0.17	1.68	1.58	0.10	
N ₂	1.97	1.68	0.29	1.72	1.48	0.24	
F ₂		1.20		1.58	1.33	0.25	
Cl ₂	1.94	1.34	0.60	1.90	1.54	0.36	
Br ₂	2.05	1.36	0.69	1.98	1.58	0.40	
I ₂	2.54	1.75	0.79	2.08	1.67	0.41	
-							

Таблица 2.64 Анизотропные ван дер Ваальсовы радиусы (Å) в связях С-А

	Α	r _t	ri	A	r _t	rı
	Н	1.26 ^a	1.01 ^a	S	2.03	1.60
1	F	1.38	1.30	Se	2.15	1.70
	Cl	1.78	1.58	Te	2.33	1.84
1	Br	1.84	1.54	N	1.62	1.42
	Ι	2.13	1.76	Sb	2.12	1.82
	0	1.64	1.44	Bi	2.25	1.85

а)для sp³ связи С-Н

Как видно из этих таблиц, в гетероядерных связях величина вдв анизотропии атомов меньше, чем в чисто ковалентных молекулах, т.к. в первом случае на атомах (кроме водорода), связанных с углеродом, имеются эффективные отрицательные заряды и значит меньший сдвиг валентных электронов в область химической связи. Влияние отрицательного заряда изучено в работе [2.525], где показано расчётами *ab initio* увеличение анизотропии по мере уменьшения отрицательного заряда на атомах галогенов в молекулах типа AX, где A = K, Na, Li, H, Br, Cl, F. Так, значения r_1 и r_1 для X = F изменяются соответственно от 1.456 и 1.428 Å ($\Delta r = 0.028$ Å) в KF до 1.344 and 1.241 Å в FF ($\Delta r = 0.101$ Å); для X = Cl от 1.777 и 1.739 Å ($\Delta r = 0.038$ Å) в KCl до 1.696 и 1.439 Å ($\Delta r = 0.257$ Å) в ClF; для X = Br от 1.894 и 1.853 Å ($\Delta r = 0.041$ Å) в KBr до 1.822 и 1.523 Å ($\Delta r =$ 0.299 Å) в FBr. Таким образом, в ионных молекулах анизотропия минимальна, в ковалентной связи максимальна, хотя качественная картина в обоих случаях одинакова.

Возможна деформация атомной сферы, приводящая к эллипсоиду, вытянутому вдоль направления химической связи. На это указал Баур [2.526] при рассмотрении кристаллических структур $M(OH)_2$, в которых при коротких длинах связей М-О из-за стерического "сминания" гидроксилов одноимёнными соседями, $r_t < r_1$. Вопрос этот однако требует дополнительного изучения, т.к. в структуре рутила, в которой кристаллизуются гидроокиси, лиганды расположены по октаэдру и, следовательно, их деформация (сминание) происходит в нижней полусфере, под углом к оси связи ~ 45°, а понятие поперечного вдв радиуса относится к углу 90°.

В заключение этого параграфа ещё раз остановимся на взаимосвязи атомных радиусов. Когда молекула превращается в металл, координационное число увеличивается от 1-2 до 8-12. При этом ковалентные радиусы превращаются в металлические из-за увеличения N_c согласно уравнениям (2.6) и (2.7). Поскольку при этом происходит полное выравнивание атомных радиусов, то в предположении одинаковых изменений ковалентных и вдв радиусов получаем, что для одновалентных элементов г_c должны увеличиться при изменении N_c от 1 до 12 на величину 0.32 по уравнениюПолинга или 0.46 Å по Брауну –Олтерману. На столько же уменьшится вдв радиус при переходе от молекулярной к металлической структуре. Следовательно, суммарное отличие r_c от r_w равняется 0.64 или 0.92 Å, т.е. в среднем 0.78 ± 0.15 Å, в полном соответстветствии с уравнением (2.26).