химфак МГУ, осень 2009

Строение кристаллических веществ и материалов

лекция 13

Бинарные и квазибинарные соединения (окончание)

Структурные типы бинарных соединений

гидриды: NaCl, CaF₂, ZnS, AIF₃, PbCl₂, LaF₃, ...

галогениды: NaCl, CsCl, CaF₂, рутил, Cdl₂, CdCl₂, ReO₃, FeCl₃, PdCl₂, AIF₃, PbCl₂, LaF₃, UCl₃, Snl₄, ...

оксиды: NaCl, Li₂O, CaF₂, рутил, ReO₃, Cu₂O,

 $\alpha - Al_2O_3, \gamma - Al_2O_3, La_2O_3, Mn_2O_3, La(OH)_3, ...$

халькогениды: Li₂O, NaCl, ZnS, NiAs, Cdl₂, CdCl₂, MoS₂, PtS, HgS, FeS₂, Sb₂S₃, ...

черный цвет: были в лекциях и на семинарах красный цвет: будут на сегодняшней лекции синий: другие распространенные структурные типы

Как построены бинарные соединения

Более 50%: 10 -15 основных структурных типов **М**_m**X**_n Простейшие типы (**NaCI**, **ZnS** и т.д.): равномерное окружение М и Х, R_M≤ R_X, к.ч.(М) ~ к.ч.(Х)

Причины усложнения структуры:

- а) **большие катионы М**: повышение к.ч. атомов металла, новые координационные полиэдры и структурные типы
- б) ковалентное связывание М–Х: новые структурные типы, слоистые, каркасные и полимерные мотивы (см. лекцию 10)
- в) **связи X–X**: новые структурные типы; сочетание мотивов неметаллов и бинарных соединений
- г) **связи М–М**: кластеры и каркасы; интерметаллиды (низкие степени окисления М, электроотрицательности Э(М) ≈ Э(Х))
- д) **молекулярные кристаллы**: плотная упаковка молекул, невалентные взаимодействия + «вторичное связывание»

Гидроксиды **М(ОН)**_n: пример квазибинарных соединений

LiOH: тип анти-PbO (см. лекцию №12) MOH (M = Na – Rb): тип *TlI*, к.ч. (Na) = 5 высокотемпературная (разупорядоченная) модификация – тип NaCl (также KCN)

```
M(OH)_2: тип CdI<sub>2</sub>, M = Mg, Ca, Mn – Ni, Cd
```

```
М(OH)<sub>3</sub>: типы Al(OH)<sub>3</sub> и La(OH)<sub>3</sub>
```

МО(ОН): слои из сдвоенных октаэдров, объединенных в цепи. Каналы с Н-связями. М = AI (бёмит), Fe, Ga

Рис. 2.5.22. Решетка бёмита АЮОН подобна решетке диапора, но с отличной геометрией расположения слоев из октаэдров

Гофрированные слои из координационных октаэдров в структуре бёмита AI(O)OH

Крупные катионы: оксид урана **U₃O₈**=U⁶⁺U⁵⁺₂O₈

a=4.136, *b*=11.816, c=6.822 A, Amm2, Z=2,

U⁶⁺, к.ч. 6, искаж. октаэдр

U⁵⁺, к.ч. 7, искаж. пентагон. бипирамида

Крупные катионы не помещаются в октаэдрических пустотах: усложнение структуры

Бинарные соединения с ковалентными связями

BN кубический – тип сфалерита, высокая твердость, абразив, диэлектрик. структура алмаза с чередующимися связанными атомами В и N

ВN гексагональный – аналог графита, плоские гексагон. сетки, мотив ... ABAB... (атом над атомом, В и N чередуются), низкая твердость, смазочный материал, диэлектрик

SiO₂ кристобалит

SiO₂ Cristobalite Space group: Fd $\overline{3}$ m Unit cell dimensions: a = 7.12 Å, Z=8 Atomic positions: Si at (0, 0, 0) O at (1/8, 1/8, 1/8)

октаэдры SiO₄ с общими вершинами в кристалле

Полиморфные модификации SiO₂

Полимерные 1D-мотивы

HgS метациннабарит (черный) – тип сфалерита, Hg–S 2.53 Å киноварь (красная) – пр. гр. P3₁21, спиральные цепи ...–S–Hg–S–... вокруг осей 3₁ (как в сером Se), Hg–S 2.36 Å, Hg...S 3.10 (×2) 3.30 (×2) Å, Hg–S–Hg 105°.

3D-каркасы с ковалентными связями (см. лекцию №12)

PtS: 3D-каркас из [⊥] лент PtS₂, КП(Pt) – квадрат (16 е), КП(S) – тетраэдр; атомы S(sp³) общие для двух лент

Си₂О: два взаимнопроникающих 3D-каркаса, КП(Си) – «гантель», КП(О) –тетраэдр; атомы О(sp³) общие для двух каркасов

Структурные типы с анионами А₂^{q-}

(1) Пирит FeS₂: кубический Ра $\overline{3}$, Z=4, ионы Fe²⁺ и центры связей S–S – мотив NaCl, оси анионов S₂²⁻ направлены по скрещивающимся диагоналям октантов (см. α –N₂), к.ч. Fe = 6 (октаэдр).

2) Марказит FeS₂: Pnnm, Z=2 Fe²⁺ по объемноцентрированному мотиву, оси анионов S₂²⁻ копланарны (см. Cl₂) с чередованием атомов Fe и центров связей S–S

3) **CaC₂**: I4/mmm, Z=2 Ca²+ и центры связей С–С по мотиву NaCI, оси анионов C₂²⁻ параллельны

α–N₂ FeS₂ пирит пр. гр. Р а 3, Z=4

Тип CaC₂ (I4/mmm, Z=2)

Катионы и центры связей X–X по мотиву NaCl, анионы X_2 вдоль *c*: F m $\overline{3}$ m \rightarrow I 4/mmm

карбиды (MC₂), пероксиды (BaO₂), надпероксиды (RbO₂)

Другие структуры с полианионами Х_nq-

 Na_2S_5

МХ: силициды, германиды, станниды щелочных металлов (1:1): тетраэдрические анионы X_4^{4-} , изоэлектронные P_4 и As_4

MS_n анионы S_n²⁻: фрагменты спиральных цепочек

MAs: спиральные цепи $(As^{-})_{\infty}$, изоэлектронные цепям Se_{∞} и Te_{∞}

CaSi₂: гофрированные гексагональные слои (Si⁻)_∞ (изоэлектронные слоям атомов в сером As), ионы Ca²⁺ в промежутках, к.ч. 6

Фазы Цинтля: локализованные связи Э-Э

LiAs, KSb: спиральные цепи $(Э^-)_{\infty}$, изоэлектронные цепям Se_{∞} и Te_{∞}

Гофрированные гексагональные слои (Si⁻)_∞ в CaSi₂ (изоэлектронны α–As)

Графитоподобные анионные слои

MgB₂ (AIB₂): ПГ-мотив из атомов металла, атомы В в тригонально-призматических пустотах образуют графитоподобные слои, B–B 1.70. Также (AI,M)B₂ (3d-металлы), LnB₂,USi₂. **MgB₂ – сверхпроводник, T_c = 30K**

CaB₆ (LaB₆): CsCI-мотив из атомов металла и октаэдрических кластеров **B**₆, вершины которых соединены связями В–В (1.78 Å) в анионный 3D-каркас

Интерметаллиды упаковка разновеликих шаров, высокие к.ч., полиэдры Франка-Каспера

икосаэдр

к.ч. = 15

к.ч. = 12

к.ч. = 16

Тип «β-W», он же интерметаллид А-15 (см. лекцию №9)

• W_I (Sn)

W_{II} (Nb)

« β –W»=WO_x (х ~ 1-2% масс.) W⁰₃W²⁺O²⁻? (2.1% масс. O)

Nb₃Sn: сверхпроводник, структурный тип A-15, $T_c = 18 \text{ K}$

Некоторые другие примеры интерметаллидов

Фазы Лавеса «RX₂»: MgZn₂ (λ_1), MgCu₂ (λ_2), MgNi₂ (λ_3)

MgZn₂: R – «лонсдейлит» …ABABAB… тетраэдры X₄ в оставшихся тетр. пустотах

MgCu₂: R – алмазоподобный мотив, тетраэдры X₄ в тетр. пустотах: ...ABCABCABC...

MgNi₂: R – мотив …ABACABAC… 1/2 всех ат. R и тетраэдры X₄ в тетр. пустотах: …

Квазикристаллы: интерметаллиды!

АІ₆₅Со₂₀Ni₁₅, Zn₆₀Mg₃₀Ln₁₀ и т.д.

 Некристаллографическая симметрия дифрактограмм
«Запрещенная» форма зёрен

(додекаэдры, триаконтаэдры)

 Чередование четких и диффузных слоевых дифрактограмм
Низкая электропроводность «Одномерные» (~ модулированные), «двумерные» (октагональные, декагональные, додекагональные) и «трехмерные» (икосаэдрические).
Гиперпространственные группы

узор Пенроуза: 2D-квазикристаллы

Кластеры металлов в низших галогенидах

Линейные «молекулы» X–Hg–Hg–Y, где X = F – I и др., Hg-Hg ~2.50 Å (в металлич. Hg 3.1?Å)

Nb₃X₈ (X=CI – I): двойной слой X, заняты 3/4 октаэдрич. пустот, Nb–Nb ~2.80 Å (в металле 2.86 Å)

ReX₃ (X=CI – I): кластеры Re₃X₉ с мостиковыми лигандами X(µ₂) Re-Re ~2.45 – 2.50 Å (в металле 2.74 Å)

Октаэдрические кластеры в галогенидах металлов

Μ₆(μ₃-Χ₈)

Nb₆I₁₁: каркас [Nb₆I₈]I₃ Mo₆Br₁₄ = [Mo₆Br₈]Br₆ MX₂: слои ([M₆X₈]X₂X_{4/2})_∞ (M = Mo, W; X = CI − I)

Μ₆(μ₂-Χ₁₂)

Zrl₂: каркас $[Zr_6I_{12}]_{\infty}$ Nb₆Cl₁₅ : каркас ($[Nb_6CI_{12}]CI_3$)_{∞} Nb₆Cl₁₄ : слои ($[Nb_6CI_{12}]CI_{4/2}$)_{∞} WCl₃: островной $[W_6CI_{12}]CI_6$ PdCl₂, PtCl₂ (полиморфные модификации): октаэдрические молекулы M₆Cl₁₂, M...M 3.4 Å

Полиморфные модификации $PdCl_2$ (PtCl₂)

полимерный мотив PdCl₂: «лента» из квадратов

плотная упаковка лент («паркет»)

молекулярные кристаллы (PdCl₂)₆ = Pd₆(µ₂-Cl₁₂) Pd...Pd 3.4 Å (нет связей)

Бинарные наночастицы и «квантовые точки» (quantum dots)

D.Fenske, T.Langetepe, Angew. Chem. Int. Ed, 2002, **41**, 300. $Ag_{124}Se_{57}(SePR_2)_4Cl_6$ $(R_2P(CH_2)_3PR_2)_{12}$

C.E.Anson, et al., Angew. Chem. Int. Ed, 2008, 47, 1326. $Ag_{154}Se_{77}(dppxy)_{18}$ $Ag_{320}(SBu^{t})_{60}S_{130}dppp_{12}$ $Ag_{352}S_{128}(SR)_{96}$ $Ag_{490}S_{188}(SR)_{114}$

Молекулярные галогениды и оксиды

(H)												1 H	2 He				
3	4	высшие степени										5	6	7	8	9	10
Li	Be											B	C	N	O	F	Ne
11	12	окисления										13	14	15	16	17	18
Na	Mg											Al	Si	P	S	Cl	Ar
19	20	21	22	23	24	25	26	27	28	29	30	31	32	33	34	35	36
K	Ca	Sc	Ti	V	Cr	Mn	Fe	Co	Ni	Cu	Zn	Ga	Ge	As	Se	Br	Kr
37	38	39	40	41	42	43	44	45	46	47	48	49	50	51	52	53	54
Rb	Sr	Y	Zr	Nb	Mo	Tc	Ru	Rh	Pd	Ag	Cd	In	Sn	Sb	Te	I	Xe
55	56	57*	72	73	74	75	76	77	78	79	80	81	82	83	84	85	86
Cs	Ba	La	Hf	Ta	W	Re	Os	Ir	Pt	Au	Hg	TI	Pb	Bi	Po	At	Rn
87 Fr	88 Ra	89** Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
*Ln		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
**An		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

«Ковалентные» неорганические соединения

Т _{пл} , ⁰С	Т _{кип} , ⁰С	R _A , Å
29	77	0.77
-32	114	0.67
-23	137	0.64
300-3	50 (возг.)	0.82
41	130	0.39
34	47	~0.6
	Т _{пл} , °С 29 -32 - 23 300-3 41 34	T _{пл} , °C T _{кип} , °C2977-32114-23137 300-350 (возг.) 411303447

R(Ti⁴⁺) = 0.64Å , R(Zr⁴⁺)=0.82Å

TiCl₄: тетраэдрические молекулы ZrCl₄: полимерная фаза, к.ч.(Zr)=6

Zr–Cl: 2×2.31 Å (концевые) 2×2.50, 2×2.66 Å (µ₂)

дополнительная координация стабилизирует кристалл, повышает Т_{пп}

кулоновское отталкивание молекул снижает Т_{пл} и Т_{кип}

Дополнительная координация Sn…Cl в кристалле (CICH₂)₂SnCl₂

Молекулярные фториды

	M-F, Å	Т _{пл} ° С	Т _{кип} , °С
SF_6	1.57	-50	-64
WF ₆	1.88	2	17
PtF ₆	1.85	61	69
UF ₆	1.98	64	57

кристаллические гексафториды **MF**₆: разупорядоченный ОЦК-мотив

кристаллы из высокосимметричных октаэдрических молекул при p=1бар обычно возгоняются, не плавясь

Схема обогащения урана в центрифуге

больше ²³⁵U

Природный уран: 0.7% ²³⁵U Низкообогащенный (**HOY**, 5% ²³⁵U) – для атомной энергетики Высокобогащенный (**BOY** 20–90% ²³⁵U) – для атомного оружия

Каскад центрифуг для обогащения урана

Figure 5: A section of a typical cascade of centrifuge stages in a European annum enrichment plant. The separative power of each centrifuge increases with the speed of revolution as well as with the beight of the centrifuge while in a cascade each centrifuge also builds on the earbhment achieved in the previous stages, pixels taken how the Ukanian Information Centre online at <u>Infordance</u> as done automatic operations (con-

" MF_5 " = M_4F_{20} (Nb, Ta, Mo, W)

упаковка тетрамерных молекул в кристалле: «выступ к впадине»

Гидриды

(H)	1)							ассоциированные молекулы									2 He
3 Li	4 Be		ионные					молекулярные				5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg		фазы внедрени					прочие				13 Al	14 Si	15 P	16 S	17 Cl	18 Ar
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 C d	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57* La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 H g	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89** Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt									
*Ln		58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 H 0	68 Er	69 Tm	70 Yb	71 Lu		
**An		90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

Температуры плавления гидридов EH_n

СН₄: известно 7 полиморфных модификаций

I: **F m 3m**, Z=4, 20 < T < 80 K II: **F 43m**, Z=4, T < 20 K (ротационные фазы)

исследованные структуры: ГЦК из атомов С, позиции Н «размазаны»

III: **Стса**, Z=16, T < 20 K (молекулы в позициях 2 и m), Структура упорядочена

NH₃: исследовано 5 полиморфов

R.Boese, M.Yu.Antipin, et al., J. Phys. Chem. B 1997, 101, 5794-5799

1.3 ГПа, 20 °C: **F m 3 m**, ГЦК (разупорядоченные молекулы) R.B. von Dreele, R.C.Hanson, *Acta Cryst. C* 1984, **40**, 1635 **(1 ГПа = 10 кбар)**

низкотемпературная форма (~75K) CI-H 1.28 Å, CI..(H)..CI 3.69 Å, CI-CI-CI 93.5°

HCI (HBr)

c=1/2

T<100 К: промежуточная форма,

атомы Н при Х разупорядочены

по двум позициям (стр. тип СІ₂);

разупорядоченная ГЦК-структура

T>105 K (HCI), 123 K (HBr):

Галогеноводороды НХ

Низкотемпературная часть фазовой диаграммы воды

на 2009 г. известно 15 кристаллических водных льдов (обозначены римскими цифрами в порядке открытия) + три аморфные водные фазы высокого давления (стекла, или «аморфные льды»)

Е.А.Желиговская, Г.Г.Маленков, Успехи химии, 2006, т.75, №1, с.64

Водные льды при р = 1 бар

О–Н 0.96 Å, О····О 2.76 Å, к.ч. 4 атомы Н разупорядочены по 4 позициям вокруг атома О

вокруг каждого О четыре атома О соседних молекул по вершинам правильного тетраэдра; Н-связи

Лед Ih

(структурный аналог <mark>β–тридимита)</mark> a = 4.50 Å, c = 7.34 Å, P6₃/mmc, Z=4 ρ = 0.92 г/см³

Лед XI (p=1бар, T < 72K) Cmc2₁, Z=8, ρ=0.93 г/см³ протоноупорядоченный аналог льда Ih

Метастабильный <mark>лед Ic</mark> (аналог <mark>β–кристобалита</mark>) a=6.37 Å, Fd 3 m, Z=8, ρ = 0.92 г/см³

Некоторые льды высокого давления

лед VII: 295 К, р > 2 ГПа ρ = 1.79 г/см³ ОЦК, О···O ~2.90 Å, к.ч. 8 протоны разупорядочены, О–Н 0.98 Å

лед X: p > 150 ГПа структурный тип Cu₂O симметричная H-связь Другие фазы с водородными связями

NH₄F: тип вюрцита, N-H-F 2.71 Å: H-упорядоченный аналог льда lh NH₄X, X = CI – I: структурный тип CsCl R(NH₄+)≈ R(K+)

MF-HF = M⁺HF₂⁻, F—H—F: F…F 2.50 Å, сильная симметричная H-связь

HCI-H₂O = H₃O+CI⁻, T_{пл} -15°C; гидроксоний OH₃+: триг. пирамида, O–H 1.03 Å

HCI-2H₂O = H₅O₂+CI⁻, T_{пл} -18°C; катион H₂O—H—OH₂+: симм. Н-связь, О···O 2.47 Å

Гидратная «клетка» в структуре «HPF₆·6H₂O» (т.е. PF_6^{-} ·[HF·H₃O·4H₂O]⁺), $T_{pa_{3}n}$ = 30 °C

каркас из усеченных октаэдров (см. лекции №№ 11 и 12)

Строение клатратов $A^{(I)}_{6}A^{(II)}_{2}(H_{2}O)_{46}$

Cl₂ 0 O

заполнение пустот молекулами «гостя» в (Cl₂)_{6.3}(H₂O)₄₆

каркас из полиэдров в кристалле клатрата

Клатрат-I: две додекаэдрические (5¹²) и шесть более крупных тетрадекаэдрических (5¹²6²) пустот на ячейку

Рис. 11. Кристаллическая структура клатрата-І.

a — полиэдрическое представление, *b* — соединенные по общей пятиугольной грани 20- и 24-вершиники с расположенными внутри гостевыми а томами.

Клатраты р-элементов: **M₆M'₂E₄₆** (E = Si, Ge и др.)

ковалентные связи Е–Е: фазы Цинтля; катионы в пустотах анионного каркаса

Материалы типа «электронный кристалл – фононное стекло» с высокой электропроводностью при низкой теплопроводности: атомы M в полостях – «погремушки» (rattlers), локализация колебаний

> Также есть клатратные полиморфные модификации Si и Ge

К.А.Ковнир, А.В.Шевельков, Успехи химии, 2004, т. 73(9), 991: А.В.Шевельков, *там же*, 2008, **77** (1), 3