химфак МГУ, осень 2009

Строение кристаллических веществ и материалов

лекция №11

Строение бинарных соединений

Бинарные соединения АХ_n: катионы в пустотах плотной упаковки анионов

равномерно заполнена половина пустот (1/2+1/2+1/2...)

Кубические упаковки анионов

CsCl

Плотная кубическая (ПК) упаковка анионов, катионы во всех кубических пустотах. Координационное число (к.ч.): (8, 8). Координационный полиэдр (КП): куб

CsCl Cesium chloride Space group: P m 3 m **Unit cell dimensions:** a = 4.24 Å. Z=1 **Atomic positions:** Cs at (0, 0, 0) Cl at (1/2, 1/2, 1/2) **Coordination:** Cubic (8, 8)

NaCl

З-слойная кубическая плотнейшая упаковка (КПУ) анионов, катионы во всех октаэдрических пустотах, к.ч. (6, 6), КП: октаэдр

NaCl Rock salt Space group: F m 3 m Unit cell dimensions: a = 5.64 Å, Z=4 **Atomic positions:** Na at (0, 0, 0) Cl at (1/2, 1/2, 1/2) **Coordination**: Octahedral (6, 6)

Фрагменты кристалла типа NaCl

(а) кубический, плотные грани (100)(б) октаэдрический, плотнейшие грани (111)

Флюорит (CaF₂)

CaF₂ **Calcium fluoride**

Space group: F m $\overline{3}$ m Unit cell dimensions: a = 5.462 Å, Z=4Atomic positions: Ca at (0, 0, 0) F at (1/4, 1/4, 1/4) Coordination Ca: cubic (8) F: tetrahedral (4)

Тип Li₂O (антифлюорит): КПУ анионов, катионы во всех тетраэдрических пустотах. Тип CaF₂ (флюорит): ПК анионов, катионы в 1/2 кубических пустот (альтернативное описание, т.к. R(Ca²⁺) ~1.0 Å и г_{тетр.}~0.2 Å, а R(F⁻) ~1.3 Å)

ZnS сфалерит (цинковая обманка)

КПУ анионов, катионы в ½ тетраэдрических пустот, к.ч.: (4, 4). КП: тетраэдр

ZnS Zincblende Space group: F 43m **Unit cell dimensions:** a = 5.383 Å, Z=4 **Atomic positions:** Zn at (0, 0, 0)S at (1/4, 1/4, 1/4) **Coordination: Tetrahedral** (4, 4)

ГПУ анионов

ГПУ из анионов X катионы M в половине тетраэдрических пустот тип ZnS (вюрцит), P6₃mc, Z=2

ГПУ из анионов X катионы M во всех октаэдрических пустотах тип NiAs (никелин), P6₃/mmc, Z=2

два выбора начала координат в структурном типе NiAs

Никелин (NiAs)

2-слойная ПШУ (ГПУ) анионов, катионы в октаэдрических пустотах. к.ч. (6, 6). КП: Ni – октаэдр, As – тригональная призма

P6 ₃ /mmc, Z=2 a=3.62 Á, c=5.03 Á c/a=1.39			
x/a	y/b	z/c	
As: 0	0	0	
Ni: 1/3	2/3	1/4	
As(2) 2/3	1/3	1/2	
Ni(2) 1/3	2/3	3/4	

ZnS вюрцит

2-слойная ПШУ (ГПУ) анионов, катионы в половине тетраэдрических пустот. к.ч. (4, 4), КП: тетраэдр

ZnS Wurtzite

Space group: $P6_3mc$, Z=2 Unit cell dimensions: a = 3.81 Å, c=6.23 Åc/a = 1.64Atomic positions: Zn at (0, 0, z ~3/8) S at (0, 0, 0) Coordination: Tetrahedral (4, 4)

Полиморфные модификации ZnS: сфалерит и вюрцит

Тип сфалерита

Описание на основе упаковок: ГЦК из анионов, катионы в половине всех тетраэдрических пустот Описание на основе мотива ковалентных связей: атомы М и Х альтернируют в каркасе алмаза

Тип вюрцита

<u>На основе упаковок</u>: ГПУ из анионов, катионы в половине тетраэдрических пустот <u>На основе мотива ковалентных связей</u>: атомы М и Х альтернируют в каркасе лонсдейлита

Фуллериды металлов

атомы М как в тетраэдрических, так и в октаэдрических пустотах (3:1)

Фуллериды M₆C₆₀: ОЦК-мотив C₆₀

атомы М в искаженно-тетраэдрических пустотах расположены по вершинам усеченного октаэдра

Ионные радиусы и пустоты в простейших структурных типах

CI⁻,R=1.80 Åоктаэдрич. пустота0.74 Åкубич. пустота1.31 Å

Li+	0.60 Å
Na+	0.95 Å
K+	1.33 Å
Rb⁺	1.48 Å
Cs+	1.65 Å

O ^{2–} ,	R:	=1.40	Å
тетраэдрич.	пустота	0.31	Å

 M_2O

Li+	0.60 Å
Na+	0.95 Å
K +	1.33 Å
Rb+	1.48 Å
Cs+	1.65 Å

тип CsCl

тип анти-CdCl₂

Энтальпии образования оксидов и хлоридов щелочных металлов

Частичное заполнение октаэдрических пустот

Тип рутила (**TiO**₂): искаженная ГПУ анионов, катионы равномерно заполняют половину октаэдрических пустот (1/2+1/2+1/2+...)

Тип корунда (α–**Al**₂**O**₃): искаженная ГПУ анионов, катионы равномерно заполняют 2/3 октаэдрических пустот (2/3+2/3+2/3+...)

корундовый мотив: графитоподобные «соты» из не связанных друг с другом катионов Al³⁺

Структура рутила (TiO₂)

искаженная ГПУ анионов, катионы равномерно заполняют половину октаэдрических пустот (1/2+1/2+1/2+...), к.ч. (6, 3), КП: Ті – октаэдр, О – треугольник

TiO₂ Rutile

Space group: P4₂/mn Unit cell dimensions: a = 4.594 Åc = 2.958 Å, Z=2.Atomic positions: Ti at (0, 0, 0) O at (0.3053, 0.3053, 0) Coordination Ti: octahedral (6) O: trigonal (3)

TiO₂ рутил: a = 4.59 Å, c = 2.96 Å, **P4₂/mnm**, Z=2

«Зрительный образ» пространственной группы **P4₂/mnm** (P 4₂/m 2₁/n 2/m)

Другие полиморфные модификации TiO₂

ТіО₂ анатаз

анатаз I4₁/amd, a=4.49 Å c=9.37 Å Z=4 (a√2 = 5.28 Å) <mark>брукит</mark> Pbca, a=5.14 Å b=5.45 Å c=9.17 Å Z=8

трехслойная упаковка О²⁻ ...АВСАВС...

четырехслойная упаковка О^{2–} ...АВСВАВСВ...

ионы Ті⁴⁺ равномерно заполняют половину всех искаженнооктаэдрических пустот (...1/2+1/2+1/2+...) Гексагональная графитовая сетка занимает 2/3 позиций плотнейшего гексагонального слоя (см. лекцию №10)

доказывается построением:

в элементарной ячейке сетки 2 узла и 1 вакансия Катионы М в графитоподобной сетке из октаэдрических пустот: составы M₂X₃ (равномерно: 2/3+2/3+2/3...), MX₃ (послойно: 2/3+0+2/3+0...)

Тип корунда (α–Al₂O₃)

заполнение пустот между слоями: 2/3+2/3+2/3+... искаж. ГПУ ионов **О**²⁻ графитоподобный (корундовый)

слой катионов, нет связей **АІ^{з+}...АІ^{з+}**

Al₂O₃ Corundum

Πр. группа R-3c, Z=6 a = 4.758 Å c = 12.991 Å $\alpha = \beta = 90^\circ, \gamma = 120^\circ$ **позиции атомов:** Al (0, 0, 0.355) O (0.303, 0, 1/4)

также V_2O_3 , Cr_2O_3 , α -Fe₂O₃

Рубин: изоморфное замещение ≤1% АІ³⁺ в α–АІ₂О₃ на Сг³⁺. Драгоценный камень; первый лазерный материал

РСА под давлением: «алмазные наковальни»

1 – образец; <mark>2 – кристалл рубина</mark>; 3 – рубашка (gasket); 4 – алмазные конусы («наковальни»), 5-7 – корпус ячейки ВД

Diamond Anvil Cell (DAC)

Vertex-linked tetrahedra only, but layers skewed in Wurtzite, & not in Blende

Структура рутила в полиэдрах

