II. Неметаллы

Кристаллические структуры простых веществ

лекция №10

Строение кристаллических веществ и материалов

химфак МГУ, осень 2009

р-Элементы, примыкающие к неметаллам

(H) ë		k	крист	аллі	Ы		Ж	кидкс	СТИ			га	13Ы			1 H	2 He
3 Li	4 Be	\leftarrow	ГПУ	/								5 B	6 C	7 N	8 O	9 F	10 Ne
11 Na	12 Mg		293 К (20 ⁰С) ГЦК→						13 Al	14 Si	15 P	16 S	17 Cl	18 Ar			
19 K	20 Ca	21 Sc	22 Ti	23 V	24 Cr	25 Mn	26 Fe	27 Co	28 Ni	29 Cu	30 Zn	31 Ga	32 Ge	33 As	34 Se	35 Br	36 Kr
37 Rb	38 Sr	39 Y	40 Zr	41 Nb	42 Mo	43 Tc	44 Ru	45 Rh	46 Pd	47 Ag	48 Cd	49 In	50 Sn	51 Sb	52 Te	53 I	54 Xe
55 Cs	56 Ba	57* La	72 Hf	73 Ta	74 W	75 Re	76 Os	77 Ir	78 Pt	79 Au	80 Hg	81 TI	82 Pb	83 Bi	84 Po	85 At	86 Rn
87 Fr	88 Ra	89** Ac	104 Rf	105 Db	106 Sg	107 Bh	108 Hs	109 Mt					ГЦК				
*Lr	า	58 Ce	59 Pr	60 Nd	61 Pm	62 Sm	63 Eu	64 Gd	65 Tb	66 Dy	67 Ho	68 Er	69 Tm	70 Yb	71 Lu		
**/	١	90 Th	91 Pa	92 U	93 Np	94 Pu	95 Am	96 Cm	97 Bk	98 Cf	99 Es	100 Fm	101 Md	102 No	103 Lr		

«Пограничные» металлы Ga, In, TI, Pb, Bi: d(M–M) увеличены, Т_{пл} понижена

	Zn	Ga	Ge	As	
a	6+6 ~ГПУ	1+6	4	3+3	
Μ	2.66 Å	2.70 Å	2.44 Å	2.51 Å	
	Cd	In	β– Sn	Sb	
	6+6 ~ГПУ	12 ~ГЦК	4+2+4	3+3	
	2.97 Å	3.34 Å	3.18 Å	2.90 Å	
	Hg	TI	Pb	Bi	
	12 ~ГЦК	12 ГПУ	12 ГЦК	«3+3»	
	2.95 Å	3.40 Å	3.49 Å	3.07 Å	

к.ч., упаковка

кратч. М-М

«Пограничные» металлы: связи М-М ослаблены

 AI: ГЦК, 3s²-AO «выключены»
 In: искаженная ГЦК

 Ga: сильные искажения структуры, T_{пл}= 30 °C

Галлий, Т_{пл} = 30 °С

пр. гр. Стсе, Z=8

к.ч. = **1** + 6 **2.47** Å 2.70 – 2.79 Å

«гранецентированная» ячейка: пары Ga₂

в жидком металле сохраняются «молекулы» Ga₂ с расстоянием Ga – Ga ~2.50 Å

удельное сопротивление (×10⁻⁶ ом/см): Al 2.5 Zn 5.7 **Ga 40** Ge ~90000 Cd 7.1 In 8.2 Sn 11.2

икосаэдры В₁₂

Алмаз

бесцветные и прозрачные кубические кристаллы

Общий вид Атомная структура длина связи C-C 1.54 Å Бесцветный, сверхтвердый, a = 3.57 Åдиэлектрик, сильно преломляет свет. Сгорает в кислороде; при t > 800 °C темнеет (частично переходит в графит)

Плоскости d («diamond») в структуре алмаза

плоскость d (001): не погашены hk0 h+k=4n

Лонсдейлит

P6₃/mmc, Z=4, a=2.52 Å, c=4.18 Å,

Kathleen Lonsdale 1903-1971

Алмаз

Обычный (кубический) алмаз. Получается из графита при очень высоком давлении и температуре выше 1500 °С

Лонсдейлит

Гексагональный алмаз: **лонсдейлит**. Получается из аморфного углерода при ударном воздействии (в метеоритах)

Различаются расположением гофрированных слоев из 6-членных циклов С₆ со структурой «кресла» (соседние слои химически связаны!)

Наноалмаз

частицы алмаза с размерами в несколько нанометров. Получаются при взрыве («неполное сгорание» тротила)

Рис. 1.Монтаж новой экспериментальной станции "Взрыв-1", предназначенной для исследования детонационных процессов при мощности взрыва до 50 г тротилового эквивалента.

Исследования взрывного синтеза наноалмазов в Сибирском центре СИ

ядра кристаллической структуры алмаза в "шубе" из органических заместителей (ОН, С=О, СООН)

Оранжевая область - образование (+) наноалмазов при взрыве тротила (интенсивность малоуглового рассеяния СИ)

Применение наноалмазов: (1) для тонкой шлифовки (2) для смазки (!!) (3) в электронных блоках (4) в оптике

и многое другое

α-Графит

Общий вид Структура кристалла

Непрозрачный, серый с металлическим блеском, мягкий (грифель, твердая смазка), хорошо проводит ток. В кислороде сгорает, в инертной атмосфере устойчив до 3500 °C. Хороший теплоизолятор. Переходит в алмаз под давлением около 100 тыс. атм. при температуре 1500 – 2000 °C.

Графитовая сетка: атомы занимают 2/3 позиций плотнейшего гексагонального слоя

доказывается построением: в элементарной ячейке сетки 2 атома и 1 центр кольца

α-Графит (...АВАВАВ...)

a=2.46 Å, c= 6.70 Å, P6₃/mmc, Z=4

Ромбоэдрический графит (...ABCABC...)

(гексагональная установка)

Гексагональный α–графит (...АВАВАВ...)

Ромбоэдрический β-графит (...ABCABC...) Α С

и еще бывает *тубулярный* (трубчатый) графит...

Слоистые соединения внедрения (ССВ) графита

Пример 1: ССВ с калием Пример 2: фторид графита

Рентгенограммы графита и продукта внедрения H₂SO₄

Нанотрубки углерода [n,m]

Однослойные нанотрубки (single-wall nanotubes: SWNT), электронная микроскопия

Интеркалированные нанотрубки

KI@SWNT электронная микроскопия

реконструкция «начинки» (KI)_∞

Рис. 4.9. ПЭМ изображение высокого разрешения композита KI@OCHT (а) и модель одномерного кристалла KI, состоящего из чередующихся колонок K-I и I-K (б).

М.В.Чернышева, "Синтез одномерных структур на основе интеркалированных одностенных углеродных нанотрубок", химфак МГУ, 2008

М. Эшер, «Спирали», 1953 г.

Молекулы фуллеренов С₆₀ и С₇₀

С₆₀ («футбольный мяч», I_h)

30 связей 6/6 (1.389 Å) 60 связей 6/5 (1.450 Å) **R (центр-С) 3.540 Å**

úġ

С₇₀ («мяч для регби», D_{5h})

Цвет раствора С₆₀ в бензоле Цвет раствора С₇₀

Как нарисовать футбольный мяч

где В – число вершин, Р – ребер, Г – граней полиэдра,

C_{60} : P = B + Γ - 2 = 60 + 32 - 2 = 90

30 связей 6/6 длиной 1.39 Å (как в бензоле) 60 связей 6/5 1.45 Å (немного длиннее)

Правило изолированных пятиугольников: в молекулах фуллеренов НЕ ДОЛЖНО БЫТЬ соседних пятичленных циклов

Ван-дер-ваальсовы размеры фуллереновых молекул в кристалле

кратчайшие невалентные контакты: отталкивание + притяжение удаленных атомов в молекулах

Полиморфные модификации С₆₀

ГЦК-С₆₀: стабилен, 295 К: a=14.152 Å, F m 3 m, Z=4 (4 молекулы C₆₀, ротационно разупорядочены); <256 K: F m 3 m \rightarrow P a 3, частичное упорядочение молекул

Α **C**₆₀ Α

B

С

ГПУ-С₆₀: P6₃/mmc, c/a ≈1.63, метастабилен, 295 К: переход в ГЦК $P 6_3/mmc \rightarrow F m 3 m$

C₆₀

2R_{вдВ} ≈ 10 Å

Ближайшее окружение атома С в разных формах углерода

Еще одна форма углерода: КАРБИН

Белый или светло-серый, полимер, найден в метеоритах и кратерах вулканов, кристаллы чистого карбина не получены

 $\dots C - C \equiv C - C \equiv C - C \equiv C - \dots$ или $\dots C = C = C = C = C \dots$

Жидкий ацетилен НС≡СН взрывчат Диацетилен НС≡С–С≡СН уже опасен!

Но карбиновую цепочку …–С≡С–С≡С–… можно СТАБИЛИЗИРОВАТЬ, если присоединить к ней атомы металла

Олигомеры C₆ – C₂₈ Q. Zheng, et al., *Chem. Eur. J.* 2006, **12**, 6486 – 6505

Сажа

аморфный углерод (не образует кристаллов)

Получается при неполном сгорании или термическом разложении углеводородов. Состоит из микрочастиц, по структуре напоминающих графит. Обычно содержит 1-2 ат.% водорода. Проводит электрический ток, сгорает на воздухе, химически гораздо активнее графита и алмаза.

Кремний, германий, олово

Алмазоподобные кубические модификации

	X–X, Å	∆E, эВ		
С	1.54	5.2	диэлектрик	
Si	2.34	1.1	полупроводник	Si, p>200 кбар,
Ge	2.44	0.67	полупроводник	Ge, p>120 кбар –
α–Sn	2.80	0.08	узкозонный	тетрагональные, тип β –Sn,
			полупроводник	металлич. проводимость

1/2

 β –Sn (белое олово, металл): сжатие α –Sn вдоль *с*, Sn–Sn 3.02 (×4) + 3.18(×2) Å **F d 3 m** \rightarrow **I 4₁/amd** плотность: α –Sn 5.75 г/см³, β –Sn 7.31 г/см³ β –Sn метастабильно ниже 13 °C, фазовый переход: «оловянная чума»

Рb: металл, ГЦК

Si β–Sn С гр. Ge Pb Элемент 4+2 3(+2) 4 4 12 к.ч. плотн. г/см³ 2.2 2.3 11.3 5.3 7.3 ~4800 1415 773 т_{⊓Л}, °С 937 327

Фосфор

белый: метастабилен, триклинный, центры молекул Р₄ по ГЦК-мотиву

красный: стабилен, аморфный, фрагменты цепочек фиолетового фосфора

фиолетовый (фосфор Гитторфа): перекристаллизацией красного Р из жидкого Рb или Bi; моноклинный, связанные скрещенные «трубки» ... – P₂ – P₈ – P₉ – P₂ – ...; волокнистый (2005 г.): триклинный, параллельные связанные «трубки» ... – P₂ – P₈ – P₉ – P₂ – ...

черный: стабилен, Стсе, Z=8, складчатые двойные слои …ABAB… из «кресел» (2 проекции)

> 83 кбар: тип α-As
> 111 кбар: ПК (тип α–Ро)

Мышьяк, сурьма, висмут

желтый мышьяк: молекулы As₄ серый мышьяк (α -As): R $\overline{3}$ m, гофрир. слои, ...ABCABC...

	X–X, Å	XX, Å	XX/X–X
Р	2.22	3.59	1.62
As	2.51	3.15	1.25
Sb	2.87	3.37	1.17
Bi	3.10	3.47	1.12

сурьма, 1 бар: тип α–Аs > 85 кбар: тип α–Ро >100 кбар: ГПУ

висмут, 1 бар: тип α –As, но близок к α –Po, к.ч. 3+3 (см. табл.) черный фосфор: полупроводник As, Sb, Bi: металлическая электропроводность

Сера

α-**S**₈: (орто)ромбическая, стабильна при T<96 ⁰C **Fddd, Z=16** (молекулы в позициях 2) β-**S**₈: моноклинная, **P2**₁/a, Z=6 (1, 1) стабильна при 113<T<125 ⁰C

В.И.Путляев, В.В.Еремин

S₆: ромбоэдрическая сера, R 3, Z=6
S₆ − S₂₀: аллотропные модификации
(кристаллы из циклических молекул S_m)

Бесконечные цепочки **S**_∞: пластическая сера (аморфн.), волокнистая сера (кристаллич.)

Молекула S₈: «корона», $\overline{8}$ 2m (D_{4d})

Искажения решетки алмаза

алмаз: Z=8, позиция 43m β–Sn: Z=2<u>,</u> позиция 42m Z=8: позиция 222 α–S₈: Z=16,

молекулы в позиции на оси 2

Селен, теллур, полоний

Простейшие ван-дер-ваальсовы кристаллы

<u>Инертные газы</u> Не (1.7К, 30 бар): ГПУ, Р6₃ mmc, Z=2, *a*=3.65 *, c*= 5.95 Å Ne – Xe: ГЦК, F m 3 m *c/a* = 1.629

<u>Двухатомные молекулы</u>

H₂ (4 K, 1 бар): P6₃mmc, Z=2, *a*=3.78, *c*=6.17 Å β–N₂ (50 K, 1 бар): P6₃mmc, Z=2, *a*=4.04, *c*=6.63 Å

ротационная мезофаза, «ГПУ» упорядоченные кристаллы: плотнейшая упаковка «гантелей»

1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2
 1/2

Плоскости е в структурном типе Cl₂ (*Стсе*, Z=4)

+ $\frac{1}{1}$ плоскость b

плоскость e = a, b

Графические обозначения и система эквивалентных позиций (см. лекцию 7)

плоскость е, перпендикулярная к плоскости рисунка

плоскость е, параллельная плоскости рисунка

Геометрическое подобие галлия и хлора

Ga, T_{nn} = 30 °C np. rp. Cmce, Z=8 K.4. = 1 + 6 2.47 Å 2.70 - 2.79 Å Cl₂, T_{nn} = -101 °C, T_{KMN} = -34 °C np. rp. Cmce, Z=4 K.4. = 1 + 10 (1.98 Å, 3.3 - 3.7 Å)

позиции атомов Ga – как в структурном типе Cl₂ !

Упаковка молекул N_2 в α -азоте

α-N₂: T < 21 K P a 3, Z=4 β-N₂: 21K < T < 63 K P6₃/mmc, Z=2 разупорядочен

CO₂: τип α–N₂; **CS₂**: тип Cl₂

Полиморфные модификации кислорода

O₂, 1бар: 90–55 К голубая жидкость 55–44 К γ–O₂ кубич. 44–24 К β–O₂ ромбоэдрич. <24 К α–O₂ монокл.

кислород, 300 К ~100 кбар δ–О₂, оранжевые кристаллы 100 – 960 кбар ε–О₂ темно-красные >960 кбар ζ–О₂ металлический

R.Steudel, M.W.Wong, Angew. Chem. Int. Ed. 2007, 46, 1768

Мотивы расположения атомов в неметаллах

Группы элементов-аналогов

Мотив	С	Ν	0	F
0D	фуллерены	N ₂ , P ₄ , As ₄	O ₂ , S _n , Se ₈	X ₂ (X=F,CI,Br,I)
1D	нанотрубки, карбин	фосфор Гитторфа	волокнистая сера; серый Se; Te	_
2D	α– и β–графит	черный Р, серый As; Sb	_	_
3D ar	тмаз (Si, Ge, α–Sn) лонсдейлит в	, фазы Р и As ысокого давлен	а–Ро ния	_
аморф- ные	сажа	красный Р	пластическая сера (цепочки)	a —

Невалентные контакты Х...Х в неметаллах

	X–X, Å	XX	ХХ	XX / X–X
		в слое	межс.	п.
	1.98	3.32	3.74	1.68
Br ₂	2.27	3.31	3.99	1.46
I ₂	2.67	3.50	4.27	1.31
		X–X, Å	ХХ	XX / X–X
S ₈		2.04	3.37	1.65
Se ₈		2.34	3.35	1.43
серь	ый Se	2.37	3.44	1.45
Те		2.84	3.50	1.23
		X–X, Å	XX	XX / X–X
Ρ		2.22	3.59	1.62
As		2.51	3.15	1.25
Sb		2.87	3.37	1.17
Bi		3.10	3.47	1.12

усиление невалентных взаимодействий для тяжелых элементов в подгруппе

Дисперсионные силы в неметаллах

