ChemNet
 
Химический факультет МГУ

Научные достижения химического факультета

Материаловеды МГУ проверили "искусственную кожу" на прочность

 

Международная группа ученых с участием руководителя лаборатории инженерного материаловедения МГУ профессора Дмитрия Иванова исследовала механические свойства нового уникального полимерного материала, который в перспективе может стать искусственным аналогом человеческой кожи.

Профессор Дмитрий Иванов покинул Россию в середине 1990-ых и за четверть века сделал успешную карьеру в европейской науке: после нескольких лет работы в Свободном университете Брюсселя (ULB) он в 2005 году возглавил Институт материаловедения в городе Мюлуз (Франция), который относится к ведению Национального научного центра Франции (CNRS). В 2011 году ученый выиграл мегагрант на создание новой научной лаборатории на факультете фундаментальной физико-химической инженерии МГУ и с тех пор участвует в научных проектах обеих стран – России и Франции. После окончания мегагранта в 2015 году лаборатория инженерного материаловедения успешно продолжает исследования, регулярно получая поддержку РФФИ, РНФ и Федеральной целевой программы "Исследования и разработки". Работа, которую группа профессора Иванова развивает последние пару лет, посвящена, в том числе, исследованию механических свойств биосовместимых полимерных материалов.

В 2018 году в журнале Science Дмитрий Иванов и его коллеги опубликовали статью, в которой заявили о создании синтетического аналога кожи хамелеона, реагирующей на механические воздействия изменением цвета и прочностных свойств. По мнению экспертного совета РНФ, исследование вошло в список самых значимых работ российских ученых за 2018 год. Затем группа профессора Иванова продолжила исследования механических свойств синтезированного материала. В новой работе ученым удалось впервые создать уникальную синтетическую платформу для дизайна материалов, воспроизводящих один в один деформационные свойства целого ряда мягких живых тканей.

Кожа обладают уникальными свойствами – она одновременно мягкая и упругая при соприкосновении, рассказывает профессор Иванов. Однако при растяжении она резко упрочняется — нарушить целостность кожного покрова можно только очень сильным механическим воздействием. Такой защитный механизм был выработан в процессе эволюции. Воспроизвести в синтетических материалах мягкость живой ткани и в тоже самое время значительное упрочнение при деформации до сих пор не удавалось. Между мягкостью и прочностью всегда приходится выбирать что-то одно. Гидрогели, к примеру, очень мягкие сами по себе. Но гидрогелю не достает механической прочности, его форма и механические свойства сильно зависит от количества влаги – в организме при избытке физиологической жидкости он может набухнуть и лопнуть.

Исследователи из МГУ совместно с коллегами из США придумали новый уникальный сополимерный материал – сложную молекулу, состоящую из нескольких частей, способную к самосборке. На длинную часть молекулы привиты молекулярные ворсинки – так, что система напоминает ёршик для чистки бутылок. На концах "ершика" находятся терминальные участки - молекулы отличного от основной цепи химического состава.  При самосборке полимера терминальные участки образуют стекловидные очень прочные нано-шарики, а длинные цепи "бутылочного блока" образуют сетку, погруженную в среду "ворсинок".  Материал, состоящий из таких щёток, изначально вполне эластичный, при деформации может очень быстро упрочняться.

В новой работе, результаты которой опубликованы в журнале Central Science, исследователи изучили механизм деформации полимера: определили механические параметры вытягивания "бутылочной щетки" в зависимости от длины "ворсинок".

"Щеточный блок с более длинными боковыми ворсинками дает более выраженное деформационное упрочнение – т.н. эффект волейбольной сетки, которую легко развернуть, но невозможно деформировать. Щетки с разной длиной ворсинок интересны, потому что они могут воспроизводить механику разных биологических тканей", - прокомментировал результаты исследования Дмитрий Иванов.

Исследователи показали, что присутствие этих полимеров в биологической среде не препятствует размножению и пролиферации клеток. "В целом, полимеры не содержат никаких цитотоксичных веществ. Кроме того, они не содержат растворителя (например, воды), что могло бы привести к неконтролируемому изменению физико-химических свойств импланта", - подтверждают ученые.

Сейчас группа Дмитрия Иванова готовится к новому этапу исследований "искусственной кожи". По словам профессора, поможет им в этом современное оборудование (в том числе рамановский микроскоп), которое установят на химическом факультете МГУ в рамках мегагранта седьмой волны.




Сервер создается при поддержке Российского фонда фундаментальных исследований
Не разрешается  копирование материалов и размещение на других Web-сайтах
Вебдизайн: Copyright (C) И. Миняйлова и В. Миняйлов
Copyright (C) Химический факультет МГУ
Написать письмо редактору