УДК 547.859+547.787.3+547.75+547.785.5+547.712.22+547.83+47.787+547.74+539.26

Соли оксазоло[3,2-*a*]пиридиния и оксазоло[3,2-*a*]пиримидиния в органическом синтезе

Е. В. Бабаев, * В. Л. Алифанов, А. В. Ефимов

Московский государственный университет им. М. В. Ломоносова, Химический факультет, Российская Федерация, 119991 Москва, Ленинские горы, 1. Факс: (495) 932 8846. E-mail: babaev@org.chem.msu.ru

В обзоре рассмотрены методы синтеза и реакционная способность солей оксазоло[3,2-*a*]пиридиния и оксазоло[3,2-*a*]пиримидиния. Обе системы в реакциях с нуклеофилами проявляют амбидентные свойства, и в зависимости от природы заместителей и реагентов раскрытию и трансформации может подвергаться как оксазольный, так и азиновый циклы. Обобщен ряд новых методологий, использующих соли оксазолопиридиния и оксазолопиримидиния в дизайне функционализованных оксазолов, имидазолов, конденсированных пирролов и других гетероциклических систем.

Ключевые слова: рециклизация, оксазол, пиридин, пиримидин, пиррол, индолизин, конденсированные циклы.

Одной из главных особенностей ароматических гетероциклов является их склонность (в отличие от карбоциклов) к реакциям гетеролитического раскрытия кольца по связи углерод-гетероатом. Образующийся при этом ациклический фрагмент нередко способен замыкаться в новый цикл. Подобные процессы рециклизации одних гетероциклов в другие как правило протекают в одну стадию и приводят к структурам с необычным расположением функций, зачастую недоступным другими методами. Хорошо известными примерами рециклизаций являются реакция Юрьева, реакция Гафнера, перегруппировки Димрота, Коста-Сагитуллина, Боултона-Катрицкого¹. Общей структурной классификации рециклизаций был посвящен ряд наших обзоров²⁻⁴. Рециклизация широко используется в современном органическом синтезе как неординарная стратегия для направленного получения биологически активных соединений, красителей, соединений с другими полезными свойствами. Поиск новых примеров рециклизаций остается актуальной задачей органической химии.

В общем случае разрыв связи в моноциклическом гетероцикле может протекать в различных положениях кольца с образованием разных ациклических соединений (или продуктов рециклизации). Еще более сложным образом может протекать раскрытие конденсированных циклов, имеющих, как минимум, два сочлененных гетероядра. В этом случае раскрытию и рециклизации может подвергаться любой из аннелированных гетероциклов, и направление раскрытия трудно предугадать. Интересной модельной системой, в которой раскрытию и рециклизации могут подвергаться циклы разной природы, является класс катионоидных гетероароматических систем 1 с мостиковым атомом азота, в которых оксазольный фрагмент конденсирован с пиридиновым (X = CH) или пиримидиновым (X = N) циклом. Хорошо известно, что моноциклические катионы оксазолия, пиридиния и пиримидиния легко раскрывают цикл под действием разнообразных нуклеофилов; в бициклических солях 1, очевидно, возможна конкуренция между раскрытием азольного и азинового циклов (схема 1, см. также обзоры^{5–7}).

Схема 1

Потенциально амбидентные катионы 1 могли бы служить перспективными реагентами для синтеза различных классов гетероциклов (замещенных азолов, азинов, азолоазинов). Настоящий обзор посвящен разработке путей синтеза конденсированных систем 1, выявлению факторов и закономерностей, влияющих на региоселективность раскрытия циклов, и способам управления такими процессами.

^{© 2008 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

1. Способы синтеза солей оксазоло[3,2-а]пиридиния

1.1. Известные стратегии

Впервые синтез солей оксазоло[3,2-a]пиридиния 2 был осуществлен действием концентрированной серной кислоты на *N*-фенацил-2-пиридоны **3** по реакции 2a (схема 2)^{8,9}.

Схема 2

X = Cl, Br

Реагенты и условия: (2a) H_2SO_4 , $HCIO_4$; (2b) R'_3N или пиколин; (2c) Br_2 , Δ , R = H; (2d) HBr, Ac_2O . Позднее был найден другой способ получения этой системы реакцией солей 2-галоген-1-фенацилпиридиния **4** с различными третичными аминами^{10,11} триэтиламином, *N*,*N*-диметиланилином, этилдиизопропиламином или α -пиколином (реакциия *2b*). Имеются еще два (более редких) пути построения бицикла **2**: замыкание оксазольного цикла в молекуле 2-(винилокси)пиридина¹² по реакции *2c* и пиридинового цикла по реакции *2d* (см. лит.¹³). Добавим к этим способам найденную нами недавно^{14,15} модификацию реакции *2b* — реакцию *3* (схема 3), которая заключается в замене галогенпиридиниевых солей **4** на серосодержащие пиридиниевые соли **5**, причем в одном из вариантов указанные соли были иммобилизованы на твердофазной подложке.

Нами найден еще один весьма необычный пример образования соли оксазолопиридиния — при реакции соли тиазолопиридиния с ароматическим амином^{16,17} (схема 4).

Выделенное вещество **ба** по данным РСА являлось комплексом соли оксазолопиридиния с анилином. В результате реакции скелет исходного соединения теряет фрагмент MeSCS. Единственная возможность объяснить неожиданное образование оксазольного цикла из тиазольного — принять, что на одной из стадий образуется *N*-фенацилпиридиниевый бетаин с какой-либо уходящей группой в α -положении (например, **6b**), который подвергается циклизации за счет потери α -заместителя (осколка дитиокарбамата).

1.2. Синтез солей оксазоло[3,2-а]пиридиния циклизацией *N*-замещенных пиридонов

Если сравнивать различные стратегии синтеза солей оксазолопиридиния 2 (см. схемы 2-4), то предпочтение следует отдать способу 2а — циклизации N-(2-оксоэтил)пиридонов 3. Как правило, остаток СН₂СОR у атома азота представляет собой фенацильную группу. Замыкание оксазольного цикла в таких пиридонах легко протекает в концентрированной серной кислоте (такая циклизация аналогична синтезу моноциклических оксазолов по Габриелю), а образующиеся соли легко выделять в виде малорастворимых перхлоратов. Известные осложнения в ходе этой циклизации связаны с сульфирующей способностью серной кислоты. Так, при попытке получить соль оксазолопиридиния с *n*-анизильным остатком у атома С(2) было выделено сульфопроизводное, а при циклизации пиридона с дифенильным остатком избежать сульфирования удалось лишь за счет осторожного нагревания смеси в концентрированной хлорной кислоте⁹. При исследовании аналогичной циклизации бензологов пиридона (схема 5) отмечено, что циклизация изохинолона протекает гладко (реакция 5a)⁹, тогда как в случае хинолонов направление циклоконденсации зависит от наличия донорных заместителей в фенацильном остатке и может протекать как обычным образом (реакция 5b)9, так и аномально (реакция 5c)¹⁸.

Нами исследована возможность синтеза таким путем разнообразных солей оксазолопиридиния, содержащих ароматические, алифатические, арилалифатические и гетероциклические заместители в пятичленном цикле, а также (цикло)алкильные заместители и/или акцепторные заместители в шестичленном кольце (схема 6, табл. 1). Выходы при таких циклоконденсациях, как правило, весьма высоки, а иногда близки к количественным. В ряде случаев эффективным способом оказалось добавление к серной кислоте эквимольного количества 30%-ного олеума. Структуры получаемых солей однозначно подтверждаются данными ЯМР¹Н, поскольку при ароматизации сигнал N-CH₂ пиридона (двойной интенсивности) меняется на слабопольный синглет оксазола Н(3) интенсивности 1 Н (см. табл. 1). В 12 случаях структура полученных нами перхлоратов была доказана методом РСА.

При использовании пиридонов с лабильными к кислотному гидролизу заместителями можно было ожидать побочных процессов. Оказалось, что в случае *N*-фенацилпроизводных нитрила, амида и эфира 2-оксоникотиновой кислоты (схема 7) циклизация протекает быстрее, чем гидролиз функциональной группы^{23,32}.

Между тем в случае циклогомологов таких соединений циклизация протекала с меньшей скоростью, чем гидролиз; в результате циклизация нитрилов (схема 8) приводила к образованию амидов^{33–35}.

Схема 7

R = CN, CONH₂, CO₂Et **Реагенты и условия:** H_2SO_4 , HClO₄, 30 мин.

Заместители				Соль 2		Пиридон 3		Ссылки	
R ²	R ³	R ⁴	R ⁵	R ¹	Выход (%)	$\delta H(3)^a$	Выход (%)	Реакция	
Н	Н	Н	Н	C ₆ H ₅	83	8.63	85 (71) ^b	9a	19-21
Н	Н	Н	Н	$p-BrC_6H_4$	89	8.70	87 (62) ^b	9a	
Н	Н	Н	Н	$m - NO_2 C_6 H_4$	68	8.87	92 (51) ^b	9a	
Н	Н	Н	Н	$p-NO_2C_6H_4$	70	8.92	80 (54) ^b	9a	
Me	Н	Н	Н	$p-Br\tilde{C}_6H_4$	79	8.50^{c}	31	9с	21-23
Me	Н	Н	Н	$p-NO_2C_6H_4$	69	8.86 ^c	57-67	9с	
Me	Н	Н	Н	C_6H_5	72	8.50^{c}	14	9с	
Me	Н	Н	Н	$p-ClC_6H_4$	46	9.49	48	9с	
Me	Н	Н	Н	3,4-Cl ₂ C ₆ H ₃	88	9.58	27	9с	
Me	Н	Me	Н	$p-NO_2C_6H_4$	83	9.68	39	9с	24, 25
Me	(CI	$(H_2)_4$	Н	$p-Br\tilde{C}_6H_4$	90	9.42	38	9с	
(CH ₂))3	Me	Н	$p-ClC_6H_4$	98	9.33	42	9с	26, 27
(CH_2))4	Me	Н	$p-ClC_6H_4$	98	9,37	40	9с	28, 29
(CH_2))5	Me	Н	$p-ClC_6H_4$	97	9.58	58	9с	27, 30
(CH_2))6	Me	Н	$p-ClC_6H_4$	96	9.52	42	9с	31
(CH ₂))4	Me	Н	$p-NO_2C_6H_4$	95	9.63	55	9с	28
Me	NO_2	Me	Н	$n-ClC_6H_4$	92	9.72	6	9с	17
Me	H	Me	CN	$n-BrC_6H_4$	82	9.61	42	9j	23, 32
Me	Н	Me	CONH ₂	$n-BrC_6H_4$	74	9.43	34	9j	23
Me	Н	Me	CO ₂ Et	$n-BrC_6H_4$	81	9.51	24	9j	23
(CH ₂))3	Н	CONH ₂	$p-ClC_6H_4$	97	9.50	45	9j	33
(CH_2)	$)_4$	Н	$CONH_2$	$p-ClC_6H_4$	98	9.52	43	9j	34
(CH_2))5	Н	$CONH_2$	$p-ClC_6H_4$	96	9.76	21	9j	35
Н	NO ₂	Н	Н	$n-\text{MeC}_6\text{H}_4$	94	9.11	51	9j	36
Н	NO_{2}	Н	Н	$n-NO_2C_6H_4$	66	9.18	38	9j	
Н	NO_2	Н	Н	$n-ClC_6H_4$	95	9.13	79	9j	
Н	H	Н	Н	$n-\mathrm{ClC}_{6}\mathrm{H}_{4}\mathrm{CH}_{2}$	87	8.64	90	13	16, 37
Н	Н	Н	Н	n-NO2C6H4CH	, 84	8.71	91	13	
Н	Н	Н	Н	Me	42	8.56	67	13	
Н	Н	Н	Н	Et	67	8.61	52	13	
Н	Н	Н	Н	4-Py	96	8.63	95	13	

Таблица 1. Синтез солей оксазолопиридиния 2 и исходных пиридонов 3

^{*а*} В ДМСО-d₆. В СF₃СООН. ^{*b*} В скобках дан выход хлорпиридиниевой соли **4**. ^{*с*} В CF₃СООН.

Схема 8

1.3. Особенности синтеза промежуточных **N-(2-оксоэтил)пиридонов 3**

Поскольку именно *N*-(2-оксоэтил)пиридоны 3 являются ключевыми интермедиатами при получении бициклических солей оксазолопиридиния (см. схему 6), кратко остановимся на способах их синтеза (схема 9, см. табл. 1).

Наиболее простой способ синтеза пиридонов 3 гидролиз 2-галогенпиридиниевых солей 4 (схема 9, реакция 9а)19,20. Соли 4 легко получать кватернизацией 2-галогенпиридинов (реакция 9b), однако этот путь неприменим для стерически затрудненных пиридинов²².

Реагенты: (9a) NaOH, H₂O/EtOH; (9b, 9c) R'COCH₂Br; (9d) H₃O⁺; (9e) MeONa/MeOH; (9f) POCl₃; (9g). Ag₂CO₃, MeI; (9h) NaOH/ClCH₂COOH; (9i) Ac₂O/HClO₄, R₃N/R´COCl; (9j) 1) NaOH, H₂O/EtOH, 2) R´COCH₂Br.

При необходимости синтеза пиридонов **3** со вторым α -заместителем эффективной оказывается стратегия, включающая *N*-алкилирование 2-метоксипиридинов (реакция *9с*). В этом случае группа ОМе выполняет функцию защитной, и в ходе реакции происходит деметилирование. 2-Метоксипиридины легко получать из 2-галогенпроизводных реакцией *9е* с метилатом натрия или из пиридонов метилированием их серебряных солей (реакция *9g*). Эта стратегия была применена нами для синтеза широкой серии α алкилпроизводных пиридонов **3** (и их циклогомологов)^{22,23,25,27} и соответствующих солей **2** на их основе (схема 10). Как видно из данных таблицы 1, стерически затрудненные 2-алкил-6-метоксипиридины алкилируются с выходами от умеренных до высоких.

Прямое фенацилирование натриевых солей пиридонов (реакция 9j) оказалось эффективным для получения пиридонов **3** с акцепторным β -заместителем в ядре. Так, щелочные соли 5-нитро-2-пиридона региоселективно алкилируются по атому азота (схема 11)³⁶.

В — основание

В случае алкилирования пиридонов, имеющих акцепторную группу в β -положении в комбинации со вторым α -заместителем (метильной группой или фрагментом алицикла), образуются смеси *О*- и *N*-фенацилпроизводных (схема 12)^{23,35,38}. С препаративной точки зрения разделение таких смесей не представляет серьезной проблемы: из-за большей растворимости и хроматографической подвижности *O*-изомеров чистые *N*-изомеры **3** удается легко выделить.

Последняя из стратегий синтеза пиридонов 3 — гидролитическое расщепление оксазолонового цикла мезоионных оксазолопиридиний-2-олатов 7 (см. схему 9, реакция 9d)^{37,39,40}. Для синтеза бициклических мюнхнонов 7 используется комбинация пиридонуксусной кислоты и ангидридов (хлорангидридов) кислот (схема 13).

 $X = CN, CONH_2, CO_2Et$ В — основание

Схема 13

i. Et₃N, (RCO₂)О или Et₃N, RCOCl

По своему структурному типу суммарная последовательность превращений на схеме 13 — конверсия аминокислоты в аминокетоны — напоминает реакцию Дейкина—Уэста (если рассматривать пиридонуксусную кислоту как своеобразную аминокислоту). Эта ступенчатая последовательность имеет ряд отчетливых преимуществ по сравнению с рассмотренными выше схемами (см. схему 9, реакции 9а, 9с, 9*j*, и схемы 10—12), поскольку, во-первых, исключает использование слезоточивых бромкетонов, а вовторых, позволяет получать пиридоны, содержащие у атома азота такой остаток метилкетона (например, метилбензилкетона или 4-ацетилпиридина), который затруднительно или невозможно ввести в структуру **3** альтернативным путем.

Итак, схема 6 является надежным путем синтеза солей оксазолопиридиния 2 из N-замещенных пиридонов 3, которые, в свою очередь, могут быть получены разнообразными способами. Эта методология позволяет гибко варьировать природу заместителей в пиридиновом и оксазольном фрагментах солей **2**.

2. Способы синтеза солей оксазоло[3,2-*а*]пиримидиния

2.1. Синтез из оксазолов

Азааналоги солей 2 -соли оксазоло[3,2-a]пиримидиния — могут быть синтезированы как из оксазолов, так и из пиримидинов путем достройки второго цикла. Конденсацией доступных 2-аминооксазолов с ацетилацетоном были получены соли **8а,b** (схема 14, реакция 14a)⁴¹. Конденсации аминоазолов и аминоазинов с 1,3-дикарбонильными соединениями, приводящие к катионоидным бициклам, хорошо известны, и данный подход является общим методом их синтеза^{42,43}.

Схема 14

Реагенты и условия: (14*a*) HCl, R = Ph (8a), Me (8b); (14*b*) HCl, Δ , HClO₄, R = Me.

Мы применили эту стратегию¹⁷ для синтеза ранее неизвестной соли оксазолопиримидина 9, не содержащей заместителей в пиримидиновом фрагменте, осуществив конденсацию 2-амино-4,5-диметилоксазола и ацеталя малонового диальдегида (реакция 14b).

2.2. Синтез из пиримидинов

Реализация альтернативного пути синтеза — достройка оксазольного цикла к пиримидиновому описана в работах немецких исследователей^{44,45}. В качестве ключевого интермедиата выступает *N*-фенацилпиримидин-2-тион, получаемый весьма необычным способом (схема 15); такие пиримидинтионы двумя различными путями (*15а* и *15b*) были превращены в соли оксазоло[3,2-*a*]пиримидиния **10**. Важно подчеркнуть, что ни в одной из цитированных работ^{41,44,45} химические свойства полученных солей **8**, **10** не изучались.

В многостадийном превращении (см. схему 15) пиримидиновый фрагмент будущего бицикла первоначально собирается весьма сложным образом, и способ синтеза оксазолопиридинов **10** по сложности резко контрастирует с простой последовательностью синтеза их пиридиновых аналогов **2** (по цепочке пиридины—N-алкилпиридоны—соли оксазолопиридиния). Нас заинтересовало, можно ли получать соли оксазолопиридиния напрямую из легкодоступного пиримидона (по аналогии с обсуждавшимся выше тандемом реакций, представленных на схемах 6 и 9 (реакция *9j*).

Оказалось (табл. 2)⁴⁶, что щелочные соли 2-пиримидона с высокими выходами подвергаются региоселективному *N*-фенацилированию (схема 16, реакция *16а*). В ИК-спектрах получаемых соединений **11** наблюдаются две группы частот колебаний СО-групп (CH₂C=O и N—C=O), строение одного из N-изомеров было подтверждено данными PCA⁴⁷.

Ar	Пирим	идон 11	Co	ль 12
	Выход (%)	δ NCH ₂ , м.д. ^{<i>a</i>}	Выход (%) ^b	δ H(3), м.д. ^{<i>a</i>}
$p-ClC_6H_4$	90	5.48	90	9.31
$p-BrC_6H_4$	95	5.43	85	9.31
$p-NO_2C_6H_4$	65	5.55	80	9.50
C ₆ H ₅	79	5.50	55 (79) ^c	9.81 ^d
p-CH ₂ C ₆ H ₄	81	5.45	75 ^c	9.20
$p-CH_3OC_6H_4$	70	5.40		

Таблица 2. Синтез солей оксазолопиримидиния из 2-пиримидона⁴⁶

^{*a*} ДМСО-d₆. ^{*b*} H₂SO₄ + SO₃. ^{*c*} CF₃SO₃H/P₂O₅. ^{*d*} CF₃COOD.

Реагенты и условия: (*16a*) ArCOCH₂Br, K₂CO₃—Me₂CO, 20 °C, 48 ч; (*16b*) Ar = p-ClC₆H₄, HClO₄/Ac₂O или H₂SO₄/HClO₄, или полифосфорная кислота/HClO₄; (*16c*) H₂SO₄·SO₃/HClO₄, CF₃SO₃H—P₂O₅, HClO₄—H₂O, Ar = Ph, p-MeC₆H₄.

Циклоконденсация полученных веществ 11 в соли 12 была осуществлена нами⁴⁶ действием олеума. В случае H_2SO_4 или полифосфорной кислоты реакция 16b останавливается на стадии протонирования. Чтобы избежать сульфирования, для случаев Ar = Ph, p-MeC₆H₄ мы использовали другой эффективный дегидратирующий агент — смесь трифторметансульфокислоты и P₂O₅. В спектрах ЯМР ¹Н солей 12 характеристичным является слабопольный сигнал оксазольного протона при 9.2—9.8 м.д.; строение одной из полученных солей было доказано методом PCA⁴⁸.

Таким образом, рассмотренные стратегии позволяют получать соли оксазолопиримидиния как из оксазолов, так и из пиримидинов, причем в зависимости от способа синтеза удается варьировать природу заместителей в положениях 2, 3, 5 и 7 бицикла.

3. Строение и реакционная способность солей оксазолопиридиния

3.1. Строение солей 2

Из данных РСА для солей **2** однозначно следует⁴⁹, что пиридиновый фрагмент бицикла имеет слабо вы-

раженный квазидиеновый характер, а следовательно, строение этой ароматической системы адекватно описывается суперпозицией резонансных структур **2A** и **2B** (но не **2C**) с делокализацией положительного заряда по триаде атомов N—C(9)—O. По данным квантово-химических расчетов^{20,21,50,51} наибольший положительный заряд сосредоточен на мостиковом атоме C(9), что позволяет ожидать предпочтительной атаки нуклеофилов именно по этому положению с последующим раскрытием оксазольного цикла.

3.2. Реакции солей оксазолопиридиния 2 с нуклеофилами

До начала наших исследований реакции солей 2 с нуклеофилами были представлены единичными примерами (схема 17). Упоминалось, что действие щелочи на соль 2 (реакция 17а) приводит к разрушению оксазольного цикла и образованию *N*-фенацил-2-пиридона практически с количественным выходом¹¹. Известен ряд примеров, когда раскрытие оксазольного кольца сопровождается замыканием нового цикла. Так, при продолжительном кипячении соли 2 в н-бутиламине происходит трансформация оксазольного цикла в имидазольный (реакция 17b) с образованием соли 1-бутил-2-фенилимидазо[1,2-а]пиридиния¹⁰; с анилином аналогичная рециклизация не происходит. При кратковременном кипячении в н-бутиламине (10 мин) удается выделить интермедиат этого превращения — циклический гидрат, который под действием полифосфорной кислоты дегидратируется и ароматизуется. Образование солей имидазо[1,2-а]пиридиния происходит и под действием других первичных аминов⁵². Действием фосфор- и мышьяксодержащих нуклеофилов (реакции 17с, d) удается синтезировать достаточно редкие азолопиридины с атомами фосфора или мышьяка⁵³.

 $R = Bu^n$, PhCH₂

Поскольку круг использовавшихся нуклеофильных агентов был недостаточно репрезентативен, мы исследовали реакции солей **2** с простыми О-, N-, S- и С-нуклеофилами. Во всех изученных случаях нуклеофильная атака протекает аналогично с раскрытием (и/или рециклизацией) оксазольного цикла (схема 18). В реакции солей **2** с гидросульфидом натрия^{23,51} (реакция *18а*) образуются соответствующие

Реагенты: (*18a*) NaSH; (*18b*) NH₃/ДМФА; (*18c*) MeNO₂, K₂CO₃; (*18d*) N₂H₄.

пиридинтионы 13, получить которые (например, 13b) прямым *N*-алкилированием пиридин-2-тиона невозможно. Реакция 18b солей 2 с аммиаком не останавливается на стадии раскрытой формы и сопровождается замыканием нового имидазольного цикла^{23,37,51,54}. При этом 5-метилимидазопиридин 14b образуется почти с количественным выходом. (Альтернативный синтез этого соединения циклоконденсацией 2-амино-6-метилпиридина с фенацилбромидом протекает с крайне низким выходом.) Отметим также, что получить имидазопиридины с у-пиридильным (14c) или бензильным (14d) остатками альтернативным путем (например, по схеме Чичибабина) весьма проблематично. Взаимодействие соли 2 с нитрометаном⁵⁵ (реакция 18с) привел к рециклизации оксазольного цикла в пиррольный; эта реакция является новым методом синтеза индолизинов, причем получить нитроиндолизин 15 прямым нитрованием 2-фенилиндолизина затруднительно. В реакции 18d соли 2 с гидразином образуется представитель необычной гетероциклической системы 1,4-дигидропиридо[2,1-*c*]-1,2,4-триазиния⁵⁴, выделенный в виде перхлората 16, причем соотношение основание-хлорная кислота составило 2 : 1. Интересно, что по данным РСА расположение бициклических структур в упаковке кристалла 16 исключает возможность образования линейных водородных связей N-H-N между парами молекул.

В реакции с анионом ацетилацетона соли 2 подвергались трансформации в индолизины 17а, b (схема 19, путь 19а)⁵⁶. Схема реакции включает нуклеофильную атаку карбаниона с раскрытием оксазольного цикла. В образовавшемся интермедиате ацетильная группа выступает в качестве карбонильной компоненты в конденсации с метиленовым звеном *N*-фенацильного остатка. Предлагаемая новая схема построения скелета индолизина представляет формальное образование двух связей С(2)-С(3) и С(9)-С(1) в пиррольном фрагменте. При использовании гомологичной соли (путь 19b) мы не исключали возможности дальнейшей циклизации аналогичного индолизина в циклазин 17с. Между тем по данным РСА оказалось57, что продуктом превращения является 1-ацетил-2,5-диметил-индолизин 17d, 17c

17a,b Ar = Ph (**17a**), 55%; *p*-NO₂C₆H₄ (**17b**), 15%

т.е. в ходе замыкания пиррольного цикла в индолизин происходит элиминирование *n*-нитробензоильного остатка, вероятно, из-за его стерического взаимодействия с метильной группой.

Для рациональной классификации типов возможных превращений солей **2** введем следующие определения⁴⁰. Условимся относить нуклеофилы к «ХН-типу», если их анион содержит хотя бы один избыточный атом водорода (ХН⁻ = OH⁻, SH⁻, RNH⁻, NO₂CH₂⁻, Ac₂CH⁻), или к «Х-типу», если дополнительный протон в анионе отсутствует (Х⁻ = RO⁻ или R₂N⁻). Во всех изученных выше случаях мы использовали нуклеофилы ХН-типа. В итоге при раскрытии цикла в аддукте **18a** (схема 20) неустойчивый илид **18b** способен стабилизироваться за счет избыточного кислотного протона ХН-группы, путем таутомерного превращения в ковалентную структуру **18c**.

Схема 20

Направление дальнейших циклизаций определялось природой остатка Х. Очевидно, что для нуклеофилов Х-типа аналогичное превращение илида **19** в какуюлибо ковалентную структуру невозможно. Нас заинтересовало, как будут реагировать соли **2** с нуклеофилами Х-типа.

17d (57%)

Оказалось, что реакции солей 2 с подобными нуклеофилами — алкоголятом или вторичными аминами — протекают весьма необычно (схема 21). В реакции 21a с метилатом натрия соль 2 образовывала кеталь 20 ⁵⁸, а в реакции 21b со вторичными аминами соли 2 превращались в аминодиены 21 (табл. 3)^{19–21}.

Диены с *n*-нитрофенильным остатком (в отличие от соединений с другими арильными заместителями) имеют глубокую темно-вишневую окраску, вероятно, из-за внутримолекулярного переноса заряда. В масс-спектрах аминодиенов наиболее интенсивен пик $[M - NR_2]$ (возможно, из-за циклизации в ароматический катион 2). Стереохимия диенов (установленная по данным спектров NOESY в C₆D₆, а также PCA⁵⁹) зависит от условий их синтеза и выделения. Кратковременное перемешивание реагентов при ком-

Ar	Х	Выход	λ_{max} (lge),	$m/z (I_{\text{отн}} (\%))$		
		(%)	EtOH	M^+	$M - NR_2$	
Ph	CH_2	67	382	280	_	
			(4.38)	(34)		
<i>p</i> -BrC ₆ H ₄	CH_2	70	391	360/358	276/274	
			(4.47)	(46/40)	(94/100)	
$m - NO_2C_6H_4$	CH_2	68	400	325	241	
	-		(4.37)	(47)	(100)	
$p-NO_2C_6H_4$	CH_2	81	464	325	241	
- 20.	-		(4.88)	(63)	(100)	
	(CH ₂) ₂	96	475	339	241	
			(4.33)	(63)	(100)	
	0	62	439	327	241	
			(4.34)	(40)	(100)	

Таблица 3. Характеристики полученных 1-амино-4-(оксазол-2-ил)бута-1,3-диенов (21)

натной температуре без растворителя приводит к бутадиенам, имеющим 1*E*,3*Z*-конфигурацию, тогда как кипячение реагентов в MeCN приводит к 1*E*,3*E*-диенам. При выдерживании растворов диенов наблюдается медленное превращение 1*E*,3*Z*-изомера в 1*E*,3*E*изомер. Бо́льшая термодинамическая стабильность *транс-транс*-изомера подтверждается и квантово-химическими расчетами энтальпий образования изомерных молекул.

Необычное направление раскрытия солей 2 на схеме 21 следует связывать с тем, что образование илидного интермедиата 19 (в случае атаки нуклеофила по атому С(9)) термодинамически неблагоприятно. В итоге нуклеофильная атака протекает либо по положению С(2) (в случае MeONa) с последующим присоединением к интермедиату молекулы метанола, либо по атому С(5) (в случае аминов) с последующим раскрытием аддукта в диен 21. Проведенные нами квантово-химические расчеты^{20,51,58} подтвердили зависимость энергий аддуктов и раскрытых форм от природы нуклеофила.

Интересно, что при введении дополнительной нитрогруппы в положение 6 солей оксазолопиридиния реакционная способность кардинально меняется. Атака не только вторичных аминов, но и первичных аминов или аммиака (схема 22), а также СН-кислот (схема 23) протекает исключительно по атому C(5) с образованием производных оксазола^{17,36}.

Схема 22

i. NuH (Nu = NH₂, NHBu, пиперидил, морфолил)

Таким образом, соли оксазолопиридиния **2** являются перспективными реагентами для синтеза неизвестных или труднодоступных классов органических веществ (схемы 18, 19, 21—23), причем такие соли представляют собой амбидентные системы, способные к раскрытию оксазольного или пиридинового фрагментов бицикла в зависимости от природы нуклеофила (ХН- или Х-типа) и природы заместителя в пиридиновом фрагменте. Невыясненным остался вопрос, как будут реагировать с нуклеофилами Х-типа гомологичные соли оксазолопиридиния **2**, содержащие у атома C(5) метильную группу, которая могла бы оказывать стерические препятствия атаке по положению 5.

3.3. Рециклизация солей 5-метилоксазоло[3,2-*а*]пиридиния в индолизины

Нами было найдено⁶⁰, что 5-метилзамещенные соли **2** реагируют со вторичными аминами крайне

необычно (схема 24). Вместо ожидаемых аминодиенов **22** были получены представители ранее неизвестного семейства 5-аминоиндолизинов **23**.

Возможный механизм обнаруженной рециклизации включает, по-видимому, первоначальную атаку нуклеофила по атому C(9) с образованием илидного интермедиата (схема 25)^{21,23}. В полученном пиридиниевом илиде имеется CH-кислотная α -метильная группа, которая и выступает в качестве нуклеофильного центра при замыкании нового пятичленного цикла с последующей ароматизацией пиррольного фрагмента. Методом ЯМР ¹Н удалось зарегистрировать в качестве интермедиата этой реакции гидрат, который быстро появляется и подвергается медленной дегидратации²³.

Причина изменения региоселективности реакции со вторичными аминами солей 2 при введении

Схема 25

NR₂

 NR_2

-H₂O

Ангидрооснование

5-СН₃-группы заключается, по-видимому, в стерических препятствиях, оказываемых метильной группой нуклеофильной атаке по атому C(5). Расчетные данные показывают²¹, что разница в энергиях при атаке амина в положения C(5) или C(9) (незначительная в случае 5-незамещенных солей) резко возрастает в пользу образования C(9)-аддукта для 5-метилпроизводных.

Вариация вторичного амина и арильного остатка в солях 5-метилоксазолопиридиния показала (табл. 4), что реакция 26а имеет общий характер и протекает с хорошими выходами⁴⁰. Стабильность образующихся 5-аминоиндолизинов существенно зависит от акцепторной природы арильного остатка в положении 2: в случаях Ar = p-NO₂C₆H₄ или 3,4-Cl₂C₆H₃ индолизины стабильны при хранении, в остальных случаях — быстро окисляются на воздухе^{23,25}. Другим стабилизирующим фактором явилось введение акцепторного заместителя в положения 6 или 8 индолизина.

Оказалось, что при замене вторичных аминов на алкоголяты рециклизация протекает аналогичным образом (реакция 26b, см. табл. 4) с образованием ранее неизвестных 5-алкоксииндолизинов²⁴. Реакцию не удается осуществить со стерически затрудненными высокоосновными нуклеофилами (*трет*-бутилатом, диизопропиламином), а также фенолятами и вторичными ароматическими аминами (возможно, из-за их пониженной нуклеофильности).

В 2006 г. появилась работа⁶², посвященная исследованию границ применимости обнаруженной нами ранее рециклизации. В этой работе было приведено несколько интересных наблюдений. Оказалось, что мольное количество вторичного амина, требуемое для рекции, можно понизить, добавляя третичный амин. Кроме того, реакцию *26а* можно эффективно ускорять, применяя микроволновое облучение. Наконец,

R	R´	R″	R‴	Ar	HNR ₂ или OAlk	Выход (%)	Ссылка
Н	Н	Н	Н	$p-NO_2C_6H_4$	Пиперидин	66	21
Н	Н	Н	Н	$p-NO_2C_6H_4$	Гексаметиленимин	65	61
Н	Н	Н	Н	$p-NO_2C_6H_4$	Диэтиламин	37	23
Н	Н	Н	Н	$p-NO_2C_6H_4$	Морфолин	79	60
Н	Н	Н	Н	$p-NO_2C_6H_4$	Пирролидин	60	23
Н	Н	Н	Н	$p-NO_2C_6H_4$	<i>N</i> -метилпиперазин	74	23
Н	Н	Н	Н	p-BrC ₆ H ₄	Пиперидин	71	23
Н	Н	Н	Н	$p-BrC_6H_4$	Морфолин	38	23
Н	Н	Н	Н	3,4-Cl ₂ C ₆ H ₃	Пиперидин	88	23
Н	Н	Н	Н	$p-ClC_6H_4$	Пиперидин	89	23
Н	Н	Me	Н	$p-NO_2C_6H_4$	Пирролидин	45	25
Н	Н	Me	Н	$p-NO_2C_6H_4$	Пиперидин	83	25
Н	Н	Me	Н	$p-NO_2C_6H_4$	Гексаметиленимин	63	25
Н	(CI	$(H_2)_4$	Н	$p-BrC_6H_4$	Пиперидин	60	25
Н	(CI	$(H_2)_4$	Н	p-BrC ₆ H ₄	Морфолин	25	25
	(CH ₂) ₃	Me	Н	$p-ClC_6H_4$	Пиперидин	98	28
	$(CH_{2})_{3}$	Me	Н	$p-NO_2C_6H_4$	Морфолин	40	28
	$(CH_2)_5$	Me	Н	$p-ClC_6H_4$	Пиперидин	97	27
	(CH ₂) ₄	Me	Н	$p-ClC_6H_4$	Пиперидин	72	27
Н	Н	Me	CN	p-BrC ₆ H ₄	Морфолин	56	23
Н	Н	Me	CONH ₂	p-BrC ₆ H ₄	Морфолин	41	23
Н	Н	Me	CO_2Et	p-BrC ₆ H ₄	Морфолин	35	23
	(CH ₂) ₃	Н	$CONH_2$	$p-ClC_6H_4$	Пиперидин	87	34
	(CH ₂) ₄	Н	CONH ₂	$p-ClC_6H_4$	Пиперидин	67	35
Н	NO ₂	Me	Н	$p-ClC_6H_4$	Морфолин	65	17
Н	H	Н	Н	$p-NO_2C_6H_4$	MeO	66	24
Н	Н	Н	Н	$p-NO_2C_6H_4$	EtO	43	24
Н	Н	Н	Н	$p-NO_2C_6H_4$	Pr ⁱ O	63	24
Н	Н	Me	Н	$p-NO_2C_6H_4$	MeO	39	24
Н	(CI	$H_{2})_{4}$	Н	$p-BrC_6H_4$	MeO	79	24
	(CH ₂) ₃	Me	Н	$p-NO_2C_6H_4$	MeO	62	28

Таблица 4. Синтез 5-замещенных индолизинов и их (цикло)гомологов

при использовании амбидентного реагента (4-аминопиперидина) было найдено, что реакция протекает с участием более нуклеофильного центра — вторичного атома азота диамина.

Отметим, что нами подробно исследовано поведение в данной рециклизации конденсированных трициклических солей 2, содержащих аннелированный алицикл разного размера^{27,35}. Такие превращения весьма необычны, поскольку связаны с кардинальной перестройкой топологии трицикла: в ходе перегруппировки линейный тип структуры превращается в ангулярный (схема 27), а из ангулярной системы образуется *пери*-конденсированный трицикл (схема 28).

Схема 27

Более того, вариация размера алицикла (схема 28) позволила отчетливо выявить границы применимости рециклизации в зависимости от неочевидных стерических факторов — степени напряженности али-

Схема 28

цикла, аннелированного к ароматическому бициклу^{25,27,28}. Оказалось, что в случаях, когда циклоалкановый фрагмент является шести- или восьмичленным, рециклизация протекает без осложнений (схема 29, реакции 29а, 29b). В случае семичленного алицикла (реакция 29c) процесс останавливается на стадии стабильного интермедиата 24а, стерическое напряжение в котором меньше, чем в ароматической системе 24b.

Наконец, если алицикл пятичленный (реакция 29d), то раскрытие оксазольного цикла, по-видимому, происходит, однако последующая циклизация оказывается невозможной из-за пространственной удаленности метиленового звена и электрофильного центра в интермедиате **24c**. Аналогичный эффект наблюдался³⁵ в трициклических солях **2**, содержащих дополнительный акцептор — амидную группу в положении 8.

4. Реакционная способность солей оксазолопиримидиния

4.1. Рециклизации солей, содержащих 5-Ме-группу

Как упоминалось выше, наиболее легко синтезировать соли оксазоло[3,2-*a*]пиримидиния **8а,b**, имеющие 5-Ме-группу (реакция *14а*, схема 14). (Исходные 2-аминооксазолы, в свою очередь, легко получать конденсацией цианамида с доступными α -гидроксикетонами — ацетоином или бензоином.) Такие соли изоструктурны 5-Ме-гомологам оксазолопиридинов, а следовательно, потенциально способны к реакции рециклизации оксазольного ядра в пиррольное под действием нуклеофилов *X*-типа.

Нами изучены реакции солей **8а,b** со вторичными аминами и алкоголятами. Оказалось, что тетраметил-

замещенная соль 8a без каких-либо осложнений гладко подвергается ранее неизвестной рециклизации с образованием соответствующих 1-амино- или 1-алкоксипроизводных пирроло[2,1-*c*]пиримидина **25** (схема 30, табл. 5)^{17,63}. Аналогичные реакции соли **8b** протекали с заметно более низкими выходами.

Об образовании пирролопиримидинов 25 свидетельствуют данные масс-спектров полученных соединений: во всех случаях наблюдается молекулярный ион, причем молекулярная масса продукта соответствует сумме масс исходного катиона и аниона нуклеофила (алколята, амид-иона) за вычетом массы одной молекулы воды. В спектрах ЯМР ¹Н наблюдается исчезновение одной из метильных групп (имевшейся в исходном катионе) и появление нового ароматического синглета в области 5.9 м.д., отвечающего протону Н(5) вновь образовавшегося пиррольного цикла. Полученные пирролопиримидины (как и индолизины) дают положительную пробу Эрлиха; отметим более высокую стабильность получаемых веществ по сравнению с аналогичными амино- и алкоксииндолизинами.

Обнаруженная реакция является новой стратегией синтеза ароматической системы пирроло[2,1-*c*]-

Таблица 5. Характеристики пирроло[2,1-с]пиримидинов 25

Coe-	Зам	иестители	Выход	Т.пл.	δ, Μ	г.д. ^а	m/z
дине- ние	R	1-X	(%)	∕°C	H(4) (c, 1	H(5) I H)	[M] ⁺
25a	Me	N(CH ₂) ₄	40	b	6.50	5.91	229
25b	Me	$N(CH_2)_6$	65	b	6.52	5.92	257
25c	Me	$N(CH_2)_7$	48	b	6.52	5.92	271
25d	Me	OMe	73	30(2)	6.45	5.87	190
25e	Me	OEt	80	38(2)	6.42	5.85	204
25f	Ph	OMe	7	128(1)	6.74	6.49	360
25g	Ph	$N(CH_2)_7$	13	146(1)	6.72	6.33	381
25h	Ph	$N(CH_2)_4$	2	137(2)	6.72	6.38	-

^{*а*} Спектр ЯМР ¹Н (ДМСО-d₆). ^{*b*} Жидкость.

пиримидина. Фактически нам удалось осуществить ступенчатую конверсию 2-аминооксазолов в пирроло[1,2-*c*]пиримидины с использованием солей 5,7-диметилоксазолопиримидиния в качестве полупродуктов. Рассмотрение суммарной стратегии сборки этого бицикла с учетом используемых реагентов и вновь образующихся скелетных связей (схема 31) показывает, что эта стратегия весьма необычна.

На схеме 31 были приведены реагенты, из которых мы «собрали» систему пирроло[1,2-*c*]пиримидина, причем особо стоит отметить доступность и дешевизну требуемых реактивов.

Пытаясь понять причины низких выходов при рециклизации соли **8b**, мы варьировали вторичные амины и условия проведения реакции. Оказалось¹⁷, что при кипячении соли в среде чистого амина реакции протекают необычно (схема 32). Взаимодействие соли **8b** с пирролидином (реакция *32a*) привело лишь к следовым количествам пирролопиримидина **25h**, а основным продуктом являлся 2-амино-4,5-дифенилоксазол (**26a**). При кипячении соли **8b** в морфолине (реакция *32b*) был выделен единственный продукт неожиданного строения — 2-морфолинил-4,5-дифенилимидазол (**26b**).

Для объяснения наблюдаемых фактов следует рассмотреть структуру предполагаемого илидного интермедиата **27**, образующегося из соли **8b** (см. схему 32). Очевидно, что такой илид стабилизирован за счет дополнительной делокализации отрицательного заряда фенильным кольцом; подобная стабилизация невозможна в илиде, образующемся из соли **8a** (а также в илидах из солей **2**). Из-за стабильности илида циклизация пиррольного цикла затруднена, и, вероятно, именно этим можно объяснить резкое снижение выходов пирролопиримидинов из соли **8b** (см. табл. 5).

Образование 2-аминооксазола **26а** в реакции *32а* с пирролидином можно объяснить только тем, что в данной реакции реализуется механизм раскрытия (и полного расщепления) пиримидинового кольца. Следовательно, реализуются одновременно два процесса — раскрытие оксазольного цикла, приводящее к пирролопиримидину **25h**, и раскрытие пиримидинового кольца, приводящее к аминооксазолу. Это означает, что в данной реакции бициклическая система оксазолопиримидиния проявляет амбидентные свойства, которых не наблюдалось в других случаях.

Неожиданное образование аминоимидазола **26b** (реакция *32b*) можно попытаться объяснить, предположив, что при раскрытии пиримидинового цикла соли **8b** (как и в реакции *32a* соли **8b** с пирролидином) первоначально образовался 2-аминооксазол, ко-

Схема 33

торый в жестких условиях (кипячение в амине) мог далее рециклизоваться в имидазол **26b**. Сходные примеры конверсии «оксазол—имидазол» описаны в литературе (например, при кипячении оксазолов с формамидом)⁶⁴. Оказалось, однако, что оксазол не является предшественником имидазола **26b** (в контрольном опыте при кипячении в морфолине оксазол остается неизменным). Объяснить образование имидазольного ядра можно, лишь предположив участие илидного интермедиата **27** (схема 33).

Вероятно, именно илид 27 реагирует с амином со ступенчатым расщеплением пиримидиниевого цикла и образованием гуанидинового фрагмента, циклизующегося в имидазол. Иными словами, для объяснения образования аминоимидазола 26b приходится предположить, что в бициклической системе разрушаются оба цикла, а новой циклизации подвергается осколочный фрагмент образовавшейся цепи.

Таким образом, при реакции 32а наблюдается naраллельное протекание двух конкурирующих процессов — раскрытия и оксазольного, и пиримидинового колец. В случае же реакции 32b наблюдается nocnedoвательное протекание этих же процессов — вначале раскрывается оксазольный цикл, а затем пиримидиновый. Иными словами, амбидентность системы оксазолопиримидиния проявляется двумя разными способами, что является весьма редким свойством гетероциклических систем.

При переходе от нуклеофилов X-типа к нуклеофилам XH-типа в системе **8a** наблюдалось региоселективное раскрытие оксазольного цикла (схема 34)⁶³. В реакции *34a* с аммиаком был получен имидазопиримидин **28**, свойства которого совпадали с данными литературы. В реакции *34b* со щелочью можно было бы ожидать (как и в случае солей **2** по аналогии с реакцией *17a*), что процесс остановится на стадии раскрытой формы пиримидона **29a**. Оказалось, одна-

ко, что конечным продуктом является пирролопиримидон **29b**, образование которого можно связать с высокой кислотностью α -метильной группы в интермедиате **29a**.

4.2. Реакции с нуклеофилами солей 5-незамещенного оксазолопиримидиния

Полученная нами соль 9 (см. схему 14, реакция 14b) реагирует с различными нуклеофилами XH- и X-типа с раскрытием пиримидинового цикла¹⁷. В реакциях с морфолином, первичным ароматическим амином или гидразином соль 9 преращалась в 2-амино-4,5-диметилоксазол (схема 35). (Напомним, что оксазолопиридиновые аналоги 2 с анилинами не реагируют, а в реакции с гидразином раскрытию и рециклизации подвергается оксазольный цикл (см. схемы 17 и 18).) В реакции 35b соли 9 с *n*-анизидином удалось выделить ионное соединение 30, являющееся своеобразным «осколком» расщепленного пиримидинового фрагмента. Структура соли 30 однозначно следует из спектра ЯМР ¹Н (в силу симметрии соответствующие пики протонов имеют двойную интенсивность). Отметим, что даже в реакции со шелочью не наблюдается признаков раскрытия оксазольного фрагмента соли 9, что было типично для оксазолопиридиниевых солей 2 и их 5-Ме-гомологов. Выделенное в ходе реакции соли 9 со щелочью нестабильное вещество не содержало в спектре ЯМР ¹Н сигналов, характерных для *N*-замещенного пиримидона, и представляло, вероятно, продукт атаки гидроксид-иона по пиримидиновому циклу соли аддукт или один из таутомеров раскрытой формы.

С препаративной точки зрения комбинация схем 14 и 35 (превращение оксазола в оксазолопиримидин и обратная конверсия в тот же оксазол) кажется бесперспективной. Между тем трансформация оксазо-

лопиримидинов в оксазолы приобретает смысл и практическое значение, если попытаться синтезировать соль оксазолопиримидиния не из оксазолов, а из производных пиримидина. В этом случае можно было бы реализовать интересную тандемную последовательность пиримидины—оксазолопиримидины—оксазолы в качестве новой перспективной стратегии гетероциклического синтеза.

Мы воспроизвели один из немногочисленных способов синтеза солей оксазолопиримидиния из пиримидина по схеме 15 и получили желаемый представитель ряда **10** (Ar = p-ClC₆H₄). Оказалось (схема 36)^{17,25}, что эта соль в реакции *36а* со вторичным амином образует стабильный аддукт **31** по атому C(5), не склонный к дальнейшему раскрытию пиримидинового фрагмента.

Гидразинолиз соли **10** (схема 36, реакция *36b*) протекал более сложно и привел к смеси трех соединений **32а—с**. Образование оксазола **32а** и пиразола **32b** (как продуктов расщепления пиримидинового фрагмента соли 10) было ожидаемым, тогда как образование триазинового производного 32с мы связываем с рециклизацей оксазольного цикла соли 10 в триазин 33 с последующим расщеплением пиримидинового фрагмента бицикла 33. Как видно, и в этом случае система оксазолопиримидина проявляет амбидентные свойства: наряду с расщеплением пиримидинового цикла протекает конкурентный процесс — раскрытие (и рециклизация) оксазольного цикла с последующим разрушением пиримидинового.

В итоге оказалось принципиально возможным получить 2-аминооксазол (например, **32a**) из пиримидина через стадию соли оксазолопиримидиния **10**, однако суммарная последовательность оказалась многостадийной, трудоемкой и осложненной побочным процессом.

Нами была разработана новая, намного более простая и эффективная стратегия синтеза соединений оксазольного ряда из пиримидинов через соли оксазолопиримидиния. Выше мы обсуждали найденный нами простой и удобный путь получения солей 2-арилоксазолопиримидиния **12** из 2-пиримидона (см. схему 16, реакции *16а* и *16с*). Оказалось¹⁷, что реакция солей **12** со вторичными аминами останавливается на стадии стабильных ярко-окрашенных азадиенов (схема 37), например, соединения **34**, охарактеризованного данными PCA.

Схема 37

Гидразинолиз солей 12 (схема 38) приводит с высокими выходами к 2-амино-5-арилоксазолам 35 (табл. 6)⁴⁶. Константы оксазолов (т.пл., спектры ЯМР ¹Н) совпали с данными литературы; дополнительно были зарегистрированы их спектры ЯМР ¹³С и масс-спектры (в литературе отсутствовавшие), а структура одного из соединений была подтверждена методом PCA⁶⁵.

Таблица 6. Синтез оксазолов 35

Ar	Выход (%)	Т.пл./°С
$p-ClC_6H_4$	95	220
$p-BrC_6H_4$	96	221
$p-NO_2C_6H_4$	93	236
Ph	90	215
p-CH ₃ C ₆ H ₄	82	218

Отметим, что существующие способы получения 2-аминооксазолов обычно либо осложнены образованием побочных продуктов, либо являются многостадийными и требуют использования сложных реагентов. Реакция «из учебника» — взаимодействие цианамида с α -гидроксикарбонильными соединениями — малоприменима для синтеза 5-арил-2-аминооксазолов (из-за малой доступности α -гидроксифенилуксусных альдегидов). Таким образом, предлагаемый путь не только успешно дополняет имеющиеся, но и может служить их удобной альтернативой, поскольку исходит из доступных и дешевых исходных веществ и включает простую последовательность реакций, протекающих с высокими выходами.

Обсуждаемая стратегия — использование солей азолопиримидиния (легко получаемых из пиримидинов) для синтеза других 2-амино-1,3-азолов — может быть распространена, например, как мы показали недавно, на получение малодоступных 2-аминоимидазолов из производных 2-аминопиримидина⁶⁶.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (проект № 07-03-0092-а).

Список литературы

- 1. H. C. Van der Plas, *Ring Transformation of Heterocycles*, Academic Press, London, 1973, V. **1**, **2**.
- E. V. Babaev, D. E. Lushnikov, N. S. Zefirov, J. Am. Chem. Soc., 1993, 115, 2416.
- 3. E. V. Babaev, N. S. Zefirov, Bull. Soc. Chim. Belg., 1992, 101, 67.
- 4. Е. В. Бабаев, Н. С. Зефиров, Химия гетероцикл. соединений, 1992, 808 [Chem. Heterocycl. Compd., 1992, 28, 658 (Engl. Transl.)].
- 5. В. И. Теренин, Е. В. Бабаев, М. А. Юровская, Ю. Г. Бундель, *Химия гетероцикл. соединений*, 1992, 792 [*Chem. Heterocycl. Compd.*, 1992, **28**, 671 (Engl. Transl.)].
- Д. А. Майборода, Е. В. Бабаев, Химия гетероцикл. соединений, 1995, 1445 [Chem. Heterocycl. Compd., 1995, 31, 1251 (Engl. Transl.)].
- Е. В. Бабаев, Н. С. Зефиров, Химия гетероцикл. соединений, 1996, 1564 [Chem. Heterocycl. Compd., 1996, 32, 1344 (Engl. Transl.)].
- C. K. Bradsher, M. F. Zinn, J. Heterocycl. Chem., 1964, 1, 219.
- 9. C. K. Bradsher, M. F. Zinn, J. Heterocycl. Chem., 1967, 4, 66.
- C. K. Bradsher, R. D. Brandau, J. E. Boliek, T. L. Hough, J. Org. Chem., 1969, 34, 2129.
- 11. H. Pauls, F. Kröhnke, Chem. Ber., 1976, 109, 3646.
- Д. Г. Ким, Г. Г. Скворцова, Химия гетероцикл. соединений, 1986, 1396 [Chem. Heterocycl. Compd., 1986, 21 (Engl. Transl.)].
- 13. R. H. Good, G. Jones, J. Chem. Soc. C, 1970, 1938.

- Е. В. Бабаев, В. Б. Рыбаков, И. А. Орлова, А. А. Буш, К. В. Маерле, А. Ф. Насонов, Изв. АН. Сер. хим., 2004, 170 [Russ. Chem. Bull., Int. Ed., 2004, 53, 176].
- 15. E. V. Babaev, A. F. Nasonov, ARKIVOC, 2001, 2, 139.
- А. А. Буш, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 2006, 140 с.
- Е. В. Бабаев, Дис. докт. хим. наук, МГУ им. Ломоносова, Москва, 2008, 450 с.
- I-Li Chen, Yeh-Long Chen, Tai-Chi Wang, Cherng-Chyi Tzeng, *Heterocycles*, 2003, 60, 131.
- 19. Д. А. Майборода, Е. В. Бабаев, Л. В. Гончаренко, Хим. фарм. журн., 1998, 32, № 6, 24 [Pharm. Chem. J., 1998, 32, 310 (Engl. Transl.)].
- Д. А. Майборода, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 1998, 165 с.
- 21. E. V. Babaev, A. V. Efimov, D. A. Maiboroda, K. Jug, *Eur. J.* Org. Chem., 1998, 193.
- 22. Е. В. Бабаев, А. В. Ефимов, Д. А. Майборода, Химия гетероцикл. соединений, 1995, **8**, 1104 [*Chem. Heterocycl. Compd.*, 1995, **31**, 962 (Engl. Transl.)].
- А. В. Ефимов, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 2006, 137 с.
- 24. E. V. Babaev, A. V. Efimov, A. A. Tsisevich, A. A. Nevskaya, V. B. Rybakov, *Mendeleev Commun.*, 2007, **17**, 130.
- 25. А. А. Цисевич, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 2006, 129 с.
- 26. D. V. Albov, V. B. Rybakov, E. V. Babaev, L. A. Aslanov, *Acta Cryst., Section E*, 2004, E60, o2313.
- Д. В. Альбов, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 2005, 140 с.
- Е. В. Бабаев, А. А. Цисевич, Д. В. Альбов, В. Б. Рыбаков, Л. А. Асланов. Изв. АН. Сер. хим., 2005, 253 [Russ. Chem. Bull., Int. Ed., 2005, 54, 259].
- 29. Д. В. Альбов, В. Б. Рыбаков, Е. В. Бабаев, Л. А. Асланов, *Кристаллография*, 2004, **49**, 495 [*Crystallogr. Reprts*, 2004, **49**, 430 (Engl. Transl.)].
- D. V. Albov, V. B. Rybakov, E. V. Babaev, L. A. Aslanov, *Acta Cryst., Section E*, 2004, E60, o1096.
- D. V. Albov, V. B. Rybakov, E. V. Babaev, L. A. Aslanov, *Acta Cryst., Section E*, 2004, E60, o1301.
- 32. D. V. Albov, E. I. Turubanova, V. B. Rybakov, E. V. Babaev, L. A. Aslanov, *Acta Cryst., Section E*, 2004, **E60**, 01303.
- 33. О. С. Мазина, В. Б. Рыбаков, С. И. Троянов, Е. В. Бабаев, Л. А. Асланов, *Кристаллография*, 2005, **50**, 68 [*Crystallogr. Reprts*, 2005, **50**, 61 (Engl. Transl.)].
- 34. О. С. Мазина, В. Б. Рыбаков, В. В. Чернышев, Е. В. Бабаев, Л. А. Асланов, *Кристаллография*, 2004, **49**, 1095 [*Crystallogr. Reprts*, 2004, **49**, 998 (Engl. Transl.)].
- О. С. Мазина, Дис. канд. хим. наук, МГУ им. Ломоносова, Москва, 2005, 150 с.
- 36. A. A. Bush, E. V. Babaev, *Molecules*, 2003, 8, 460; http:// www.mdpi.org/molecules/papers/80600460.pdf
- Z.-G. M. Kazhkenov, A. A. Bush, E. V. Babaev, *Molecules*, 2005, 10, 1109; http://www.mdpi.org/molecules/papers/ 10091109.pdf.
- E. V. Babaev, N. I. Vasilevich, A. S. Ivushkina, *Beilstein J.* Org. Chem., 2005, 1, 9; http://bjoc.beilstein-journals.org/ content/pdf/1860-5397-1-9.pdf.
- Е. В. Бабаев, И. А. Орлова, Химия гетероцикл. соединений, 1997, 569 [Chem. Heterocycl. Compd., 1997, 33, 489 (Engl. Transl.)].
- 40. E. V. Babaev, J. Heterocycl. Chem., 2000, 37, 519.
- 41. В. А. Чуйгук, Е. А. Лещенко, Укр. хим. журн., 1974, 40, 633 [Chem. Abstr., 1974, 81, 105438].
- 42. С. И. Шульга, В. А. Чуйгук, *Укр. хим. журн.*, 1972, **38**, 169.
- 43. С. И. Шульга, В. А. Чуйгук, *Укр. хим. журн.*, 1970, **36**, 483.
- 44. J. Liebscher, A. Hassoun, Synthesis, 1988, 816.

- 45. B. Reimer, M. Patzel, A. Hassoun, J. Liebscher, *Tetrahedron*, 1993, **49**, 3767.
- 46. V. L. Alifanov, E. V. Babaev, Synthesis, 2007, 263.
- 47. V. B. Rybakov, V. L. Alifanov, P. V. Gormay, E. V. Babaev, *Acta Cryst., Section E*, 2006, E62, 03840.
- 48. V. B. Rybakov, V. L. Alifanov, E. V. Babaev, Acta Cryst., Section E, 2006, E62, 04578.
- 49. Е. В. Бабаев, В. Б. Рыбаков, С. Г. Жуков, И. А. Орлова, Химия гетероцикл. соединений, 1999, 4, 542 [Chem. Heterocycl. Compd., 1999, 35, 479 (Engl. Transl.)].
- D. A. Maiboroda, E. V. Babaev, K. Jug, J. Org. Chem., 1997, 62, 7100.
- 51. Е. В. Бабаев, К. Ю. Пасичниченко, Д. А. Майборода, Химия гетероцикл. соединений, 1997, 397 [Chem. Heterocycl. Compd., 1997, **33**, 338 (Engl. Transl.)].
- 52. A. R. Katritzky, A. Zia, J. Chem. Soc., Perkin Trans. 1, 1982, 131.
- 53. G. Markl, S. Pflaum, Tetrahedron Lett., 1987, 28, 1511.
- 54. Е. В. Бабаев, А. В. Ефимов, В. Б. Рыбаков, С. Г. Жуков, Химия гетероцикл. соединений, 1999, 550 [Chem. Heterocycl. Compd., 1999, 35, 488 (Engl. Transl.)].
- 55. Е. В. Бабаев, С. В. Боженко, Д. А. Майборода, Изв. АН. Сер. хим., 1995, 2298 [Russ. Chem. Bull., Int. Ed., 1995, 44, 2203].
- 56. Е. В. Бабаев, С. В. Боженко, Химия гетероцикл. соединений, 1997, 141 [Chem. Heterocycl. Compd., 1997, **33**, 125 (Engl. Transl.)].

- 57. Е. В. Бабаев, А. В. Ефимов, В. Б. Рыбаков, С. Г. Жуков, Химия гетероцикл. соединений, 2000, 401 [Chem. Heterocycl. Compd., 2000, **36**, 339 (Engl. Transl.)].
- 58. E. V. Babaev, S. V. Bozhenko, D. A. Maiboroda, V. B. Rybakov, S. G. Zhukov, *Bull. Soc. Chim. Belg.*, 1997, **106**, 631.
- 59. В. Б. Рыбаков, Е. В. Бабаев, А. А. Цисевич, А. В. Аракчеева, А. Шонлебер, *Кристаллография*, 2002, 47, 1042 [*Crystallogr. Reprts*, 2002, 47, 973 (Engl. Transl.)].
- 60. Е. В. Бабаев, А. В. Ефимов, Химия гетероцикл. соединений, 1997, 998 [Chem. Heterocycl. Compd., 1997, 33, 964 (Engl. Transl.)].
- 61. Е. В. Бабаев, А. В. Ефимов, С. Г. Жуков, В. Б. Рыбаков, Химия гетероцикл. соединений, 1998, 852 [Chem. Heterocycl. Compd., 1998, **34**, 852 (Engl. Transl.)].
- 62. P. Tielmann, C. Hoenke, Tetrahedron Lett., 2006, 47, 261.
- 63. Е. В. Бабаев, В. Л. Алифанов, Изв. АН. Сер. хим., 2007, 1611 [Russ. Chem. Bull., Int. Ed., 2007, 56, 1675].
- 64. R. Gompper, O. Christmann, Chem. Ber., 1959, 92, 1945.
- V. B. Rybakov, V. L. Alifanov, E. V. Babaev, *Acta Cryst.*, Section E, 2006, E62, 04809.
- 66. D. S. Ermolat'ev, E. V. Babaev, E. V. Van der Eycken, Org. Lett., 2006, 8, 5781.

Поступила в редакцию 28 января 2008