

Available online at www.sciencedirect.com

Tetrahedron

Tetrahedron 64 (2008) 749-756

www.elsevier.com/locate/tet

Synthesis and reactivity of 5-Br(I)-indolizines and their parallel cross-coupling reactions

Alexey G. Kuznetsov, Alexander A. Bush, Eugene V. Babaev*

Chemistry Department, Moscow State University, Moscow 119991, Russia

Received 3 April 2007; received in revised form 18 October 2007; accepted 1 November 2007 Available online 7 November 2007

Abstract

Poorly available 5-iodo- and 5-bromoindolizines were prepared via regioselective lithiation of indolizines followed by halogenation. 5-Halogenoindolizines were found to be passive toward nucleophiles, whereas they may be trifluoroacetylated at C-3 and involved in reaction with DMAD giving cycl[3.2.2]azine. The first successful Suzuki-coupling of 5-bromo(iodo)indolizines with different arylboronic acids (performed as a parallel synthesis) led to a series of 5-arylindolizines; the effect of substituents on the reaction yield was examined. © 2007 Elsevier Ltd. All rights reserved.

1. Introduction

Indolizines are an important class of heterocyclic compounds with interesting photophysical and biological properties.^{1,2} There are nine non-equivalent positions around the bicyclic indolizine structure, and many strategies have been reviewed to prepare substituted indolizines with a different arrangement of functional groups.^{1–3} However, one important class of substituted indolizine, namely the 5-halogenoindolizines **I**, remains poorly available.

One would expect that the position of the halogen in the indolizines I should be equivalent to the α -position in 2-halogenopyridines, and therefore a halogen could be easily substituted by nucleophiles. According to most theoretical calculations of indolizine reactivity (starting from earliest statements by Coulson⁴ and Fukui⁵), position 5 should be most favorable for nucleophilic attack. However, nucleophilic attack at C-5 was confirmed only for indolizines with an additional electron-withdrawing group at position 6 or 8. Two reported examples involve direct S_NH amination at C-5 of 8-nitroindolizines⁶ and substitution of chlorine in 5-Cl-6-CN-indolizines by *O*-,

* Corresponding author.

E-mail address: babaev@org.chem.msu.ru (E.V. Babaev).

N- and S-nucleophiles;⁷ the reactivity of simple 5-halogenoindolizines remained unclear.⁸

It is hard to introduce a halogen atom at position 5 of indolizine by common methods, and our earlier attempts are shown in Scheme 1. The Chichibabin reaction (route (a)), a standard way to substituted indolizines, is useless for the target class I. 5-Chloro-2-methylindolizine has been once mentioned in the old patent.⁹ However, careful reinvestigation of reaction between 6-halogeno-2-picolines IIa and α-bromoketones proved¹⁰ that the condensation products have the structures **IIb.** The strategy that allows insertion of chlorine at position 5 (route (b)) is the reaction of 6-cyanoindolizine-5-ones IIIa (that are preferable tautomeric forms of 5-hydroxyindolizines **IIIb**) with POCl₃ leading to 5-chloro-6-cyanoindolizines.⁷ Another strategy (route (c)) is the 1,3-dipolar cycloaddition of the pyridinium ylides derived from 2-chloro-N-phenacylpyridinium salts IVa leading to 3-aroyl-5-chloroindolizines.^{11,12} A similar reaction of 2-bromopyridinium ylide was also reported,¹³ however both 5-Cl- and 5-Br-derivatives are unstable and quickly lose halogen atom due to an unusual cyclization to tetracyclic structures IVb.¹¹⁻¹³ In addition to the strategies listed in Scheme 1, a novel gold-assisted cycloisomerization of 2-propargylpyridines should be mentioned, since in a single example it led to a 1,2-substituted 5-bromoindolizine.¹⁴

In 1992 Renard and Gubin¹⁵ employed a promising method for the synthesis of a wide range of 5-substituted indolizines by direct lithiation of 2-phenylindolizine, and further reactions with different (mostly carbon) electrophiles. The only heteroatomic group inserted by this method was SiMe₃. Earlier¹⁶ we have reinvestigated this procedure, suggested the optimized protocol of indolizine lithiation (due to observed low yields of products), and succeeded in the preparation of a 5-iodoindolizine capable of Suzuki cross-coupling. In this paper we report applications of this strategy (route (d)) to the synthesis of a series of 5-Br(I)-indolizines (with additional groups in the pyrrole and pyridine rings). We found that such compounds can be involved in Suzuki-coupling, and developed a convenient parallel protocol for this reaction leading to a library of poorly investigated 5-arylindolizines. Reactivity of 5-Br(I)indolizines toward simple nucleo-, electro- and dienophiles was also studied.

2. Results and discussion

2.1. Synthesis of 5-bromo(iodo)indolizines

The starting indolizines 1a-d were prepared by known procedures.^{17,18} The corresponding lithium derivatives 2a-d were formed in THF at -78 to -80 °C with *n*-BuLi (and TMEDA as co-reagent) using our optimized protocol for the direct lithiation of 2-substituted indolizines (Scheme 2).¹⁶ Reaction of 2a-d with 1,2-dibromotetrafluoroethane as brominating agent led to 5-bromoindolizines 3a-d in high yields (80–98%). The reaction of lithium derivatives 2a-c with a THF solution of I₂ gave 5-iodosubstituted indolizines

4a–c with 76–95% yields. Although the 5-Br(I)-indolizines (oils or solids) obtained are unstable in air, they gave satisfactory analytical and spectroscopic data (see Section 4). The ¹H NMR spectra of **3** and **4** were similar to the parent indolizines **1**, and the initial signal 5-H (observed in **1**) was absent in the spectra of **3** and **4**.

2.2. Reactions of indolizines 3, 4 with common nucleo-, electro- and dienophiles

In contrast to the theoretical predictions mentioned above, 5-halogenoindolizines appeared to be completely passive in their reactions with nucleophiles. Thus, heating of indolizines 3a-c and 4a-c with ^{*i*}PrONa (in ^{*i*}PrOH) or with morpholine (in the presence of ^{*i*}BuOK) at reflux for 24 h led only to unchanged starting materials. Analogously, no changes were observed in the reaction of 3a or 4a with diethyl sodiomalonate (in EtOH, reflux for 24 h). The reason why 5-Br(I)-indolizines behave differently from 2-Br(I)-pyridines may be explained by the general π -excessive character of the indolizine nuclei preserved in structures 3 and 4.

Electrophilic substitution in indolizines usually occurs at position C-3; some exceptions have been found for 5-substituted indolizines. (Thus, 5-methylindolizines usually give mixtures of 1- and 3-substituted products.) We found that reaction of 5-bromoindolizine **3b** with trifluoroacetic anhydride at 0 °C led exclusively to the 3-COCF₃ derivative **5** with 83% yield (Scheme 3). The regioselectivity of C-3 attack clearly followed from ¹H NMR spectroscopic data: the signal of proton H₃ disappeared, and all other peaks (excluding H₈) underwent insignificant downfield shift.¹⁹ It should be

1-4: a: R¹=R³=H, R²=Ph; b: R¹=R³=H, R²=^tBu; c: R¹=H, R²=^tBu, R³=Me; d: R¹=Me, R²=tBu, R³=H

mentioned that the 5-bromo substituent slightly increases the basicity of the pyrrole fragment: protonation of indolizine **3b** in CF₃COOD occurred at C-3 (Scheme 3), and after 2 days the proton H-3 was completely exchanged, whereas the parent 5-H indolizine **1b** during the same time underwent H/D exchange at C-3 only, in 25%.

Another well-known reactivity type of indolizine is [8+2] cycloaddition of dienophiles across the positions 3 and 5 (see review, Ref. 20). The reaction was usually studied for 5-unsubstituted indolizines, and initial cycloadducts (e.g., with alkynes) underwent spontaneous oxidation to aromatic cycl[3.2.2]azines. We found that 5-bromoindolizine **3d** does not react with ethyl acrylate, whereas its reaction with DMAD led to cycl[3.2.2]azine **6** in 87% yield (Scheme 3).

Table 1		
The yields	(%) for	5-arylindolizines

Evidently, this [8+2] cycloaddition (with HBr elimination) is non-oxidative, and is similar to the behavior of 3-cyanoindolizine.²⁰

2.3. Parallel cross-coupling reactions

Although the halogen atom in indolizines **3** and **4** is not a leaving group in reactions with common nucleophiles, one would expect the possibility of its replacement in Suzukitype cross-coupling reactions. We investigated the reactions of 5-Br(I)-indolizines **3a**-**c** and **4a**-**c** with several arylboronic acids (listed in Table 1) using PdCl₂ as the catalyst, 1,4-dioxane/ H₂O as the solvent, and K₂CO₃ as the base. All 36 reactions were performed in parallel (heating, shaking, and filtration) using a SynCore parallel reactor. The resulting 5-arylindolizines **7a**-**r** were obtained in moderate to excellent yields (Scheme 4, Table 1).

The yields in Table 1 allowed qualitative comparison of the reactivity of indolizines in the cross-coupling reaction depending on the nature of the substituents at positions 2, 5, and 6. Firstly, the reactivity of 5-Hal-2-*tert*-butylindolizines was found to be generally higher than that of the corresponding 2-phenyl derivatives; this was evident for 5-bromo (**3a**,**b**) and 5-iodo (**4a**,**b**) pairs of compounds. Secondly, the appearance of the 6-methyl group in close vicinity to the halogen atom at C-5 caused a decrease of reactivity (probably due to steric effects). This trend was clear for 5-bromo derivative

Boronic acid	Indolizine	Indolizine										
			N Br			N Br			N Br			
MeO B(OH) ₂	76	7a	70	87	7g	49	87	7m	64			
B(OH) ₂	80	7b	73	78	7h	44	78	7n	41			
F ₃ C	97	7c	86	90	7i	47	96	70	32			
B(OH) ₂	84	7d	72	79	7j	44	90	7p	68			
CI CI CI	93	7e	82	87	7k	36	87	7q	70			
B(OH) ₂ CHO	96	7f	84	91	71	52	95	7r	72			

Scheme 4.

3b and its 6-methyl homologue **3c**, and for the homologous pair of 6-H/6-Me-5-iodo-derivatives **4b**,**c**. Interestingly, the difference in reactivity of 5-iodo and 5-bromo groups is negligible for 6-unsubstituted indolizines (cf. the yields for **3a** and **4a** or **3b** and **4b**), whereas for the 6-methyl series the yields of 5-iodoindolizine **4c** were 2-3 times higher against 5-bromoindolizine **3c**.

3. Conclusion

Regioselective lithiation followed by halogenation opens a new route to previously poorly available 5-bromo- and 5iodoindolizines. Although these compounds are not stable in air, they can be involved in Suzuki-coupling reaction and serve as suitable precursors of a poorly investigated family of 5-arylindolizines. 5-Br(I)-indolizines kept π -excessive properties: they can not be involved in nucleophilic substitution reactions, but can react with some electrophiles and dienophiles.

4. Experimental

4.1. General

All melting points are uncorrected. IR spectra were obtained using a UR-20 spectrometer. ¹H and ¹³C NMR spectra were recorded on AM 400 Bruker spectrometer for ¹H at 360 MHz (in DMSO- d_6) and for ¹³C at 100 MHz (in DMSO- d_6 or acetone- d_6). THF was distilled over benzophenone/sodium and used immediately. TMEDA was distilled over sodium. The freshly prepared solution of *n*-BuLi in hexane (1.19 M) was titrated according to a known procedure.²¹ All boronic acids were supplied by Aldrich. All reactions involving air-sensitive reagents were performed using syringe—septum cap techniques in oven-dried glassware under a dry argon/nitrogen atmosphere. Parallel cross-coupling and parallel evaporation were performed and accelerated using the BÜCHI SynCore Reactor (with its filtration unit, vacuum pump V-501 and vacuum controller V-805).²²

4.2. Preparation of 5-Br(I)-indolizines (general procedure)

To a solution of indolizine 1a-d (20 mmol) and TMEDA (22 mmol) in anhydrous THF (70 mL) at -80 °C, a solution of *n*-BuLi (18.5 mL, 1.19 M, 1.1 equiv) was added with stirring. The mixture was allowed to warm to -20 °C, and kept at this temperature for a further 2 h. A yellow color appeared. Then the mixture was cooled to -80 °C, and 1,2-dibromotetrafluoroethane (BrCF₂)₂ (22 mmol) or a dry THF (30 mL)

solution of I_2 (22 mmol) was slowly added. The mixture was allowed to warm to room temperature and treated with a saturated solution of ammonium chloride. The organic layer was separated and the aqueous layer was extracted with dichloromethane. After drying over anhydrous Na₂SO₄ and evaporation of the organic solvents, the crude product was purified by column chromatography on silica gel (eluent hexane).

4.2.1. 5-Bromo-2-phenylindolizine (3a)

From 2-phenylindolizine (**1a**). Yield of **3a**: 80%; light yellow solid, mp: 85–87 °C; ¹H NMR: δ =7.87 (1H, s, H₃), 7.70–7.68 (2H, m, Ph-H), 7.42–7.38 (2H, m, Ph-H), 7.36 (1H, d, H₆, J₆₇=8.6 Hz), 7.29–7.24 (1H, m, Ph-H), 6.88 (1H, s, H₁), 6.77 (1H, d, H₈, J₇₈=7.0 Hz), 6.58–6.54 (1H, m, H₇); elemental analysis calcd (%) for C₁₄H₁₀BrN (272.14): C 61.79, H 3.70, N 5.15; found: C 61.99, H 3.62, N 5.28.

4.2.2. 5-Iodo-2-phenylindolizine (4a)

From 2-phenylindolizine (**1a**). Yield of **4a**: 76%; light yellow solid, mp: 105–107 °C; ¹H NMR: δ =7.85 (1H, s, H₃), 7.68–7.66 (2H, m, Ph-H), 7.42–7.35 (3H, m, Ph-H), 7.24–7.22 (1H, m, H₆), 7.06 (1H, d, H₈, J₇₈=7.7 Hz), 6.94 (1H, s, H₁), 6.45–6.43 (1H, m, H₇); elemental analysis calcd (%) for C₁₄H₁₀IN (319.14): C 52.69, H 3.16, N 4.39; found: C 53.01, H 3.43, N 4.58.

4.2.3. 5-Bromo-2-tert-butylindolizine (3b)

From 2-*tert*-butylindolizine (**1b**). Yield of **3b**: 97%; a yellow oil that formed crystals upon standing at 9 °C; IR (neat): 1620, 1500, 1480 cm⁻¹; ¹H NMR: δ =7.35 (1H, s, H₃), 7.28 (1H, d, H₆, J_{67} =8.9 Hz), 6.73 (1H, d, H₈, J_{78} = 6.6 Hz), 6.55–6.50 (1H, m, H₇), 6.48 (1H, s, H₁), 1.35 (9H, s, ¹Bu); ¹³C NMR (acetone-*d*₆): 140.9, 133.8, 117.4, 117.1, 113.6, 109.1, 99.5, 99.4, 31.5 (C(CH₃)₃), 30.8 (*C*(CH₃)₃); elemental analysis calcd (%) for C₁₂H₁₄BrN (252.15): C 57.16, H 5.60, N 5.55; found: C 56.95, H 5.63, N 5.77; ¹H NMR (CF₃COOD): δ =9.30 (1H, m), 8.95 (2H, m, H₆+H₈), 8.03 (1H, s, H₁), 6.43 (1H, s, 3-CHD), 2.46 (9H, s, ^{*t*}Bu).

4.2.4. 5-Iodo-2-tert-butylindolizine (4b)

From 2-*tert*-butylindolizine (**1b**). Yield of **4b**: 95%; light green solid, mp: 57–59 °C; IR (neat): 1615, 1490, 1475 cm⁻¹; ¹H NMR: δ =7.32 (1H, s, H₃), 7.28 (1H, d, H₆, J_{67} =8.9 Hz), 6.96 (1H, d, H₈, J_{78} =6.8 Hz), 6.53 (1H, s, H₁), 6.37–6.33 (1H, m, H₇), 1.35 (9H, s, ^{*t*}Bu); ¹³C NMR (acetone- d_6): 140.2, 132.7, 121.6, 118.0, 117.3, 113.1, 99.5, 88.4, 31.6 (C(CH₃)₃), 30.7 (C(CH₃)₃); elemental analysis calcd (%) for C₁₂H₁₄IN (299.15): C 48.18, H 4.72, N 4.68; found: C 48.03, H 4.93, N 4.57.

4.2.5. 5-Bromo-6-methyl-2-tert-butylindolizine (3c)

From 6-methyl-2-*tert*-butylindolizine (**1c**). Yield of **3c**: 92%; light yellow solid, mp: 28–30 °C; ¹H NMR: δ =7.35 (1H, s, H₃), 7.19 (1H, d, H₈, J₇₈=6.3 Hz), 6.52 (1H, d, H₇, J₇₈=6.3 Hz), 6.41 (1H, s, H₁), 2.35 (3H, s, Me), 1.35 (9H, s, ¹Bu); elemental analysis calcd (%) for C₁₃H₁₆BrN (266.18): C 58.66, H 6.06, N 5.26; found: C 58.52, H 6.20, N 5.51.

4.2.6. 5-Iodo-6-methyl-2-tert-butylindolizine (4c)

From 6-methyl-2-*tert*-butylindolizine (**1c**). Yield of **4c**: 87%; light yellow-green solid, mp: 39–41 °C; ¹H NMR: δ = 7.38 (1H, s, H₃), 7.18 (1H, d, H₈, J_{78} =6.2 Hz), 6.51–6.49 (2H, m, H₁+H₇), 2.37 (3H, s, Me), 1.35 (9H, s, 'Bu); elemental analysis calcd (%) for C₁₃H₁₆IN (313.18): C 49.86, H 5.15, N 4.47; found: C 49.60, H 5.48, N 4.71.

4.2.7. 5-Bromo-1-methyl-2-tert-butylindolizine (3d)

From 1-methyl-2-*tert*-butylindolizine (**1d**). Yield of **3d**: 98%; yellow oil; ¹H NMR: δ =7.30 (1H, d, H₆, J₆₇=9.8 Hz), 7.28 (1H, s, H₃), 6.68 (1H, d, H₈, J₇₈=6.6 Hz), 6.54–6.51 (1H, m, H₇), 2.43 (3H, s, Me), 1.37 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₁₃H₁₆BrN (266.18): C 58.66, H 6.06, N 5.26; found: C 58.71, H 6.22, N 5.51.

4.3. 5-Bromo-2-tert-butyl-3-trifluoroacetylindolizine (5) *by acylation reaction*

Trifluoroacetic anhydride (1 mL) was added with stirring to a solution of indolizine **3b** (0.252 g, 1.0 mmol) in anhydrous THF (10 mL) at 0 °C. The mixture turned yellow. The solution was kept at 0 °C (1 h) and then treated with a saturated solution of ammonium chloride. The organic layer was separated and the aqueous layer was extracted with dichloromethane. After drying over anhydrous Na₂SO₄ and evaporation of the organic solvents, the crude product was purified by column chromatography on silica gel (eluent hexane/CHCl₃; 9:1). The isolated product was 5-bromo-3-trifluoroacetyl-2-tertbutylindolizine 5a (0.291 g, 83%) as a deep yellow solid. Mp: 48–50 °C; IR (Nujol): 1695, 1525, 1490 cm⁻¹; ¹H NMR: δ =7.36 (1H, d, H₆, J₆₇=7.6 Hz), 6.87 (1H, d, H₈, J₇₈= 7.0 Hz), 6.80-6.76 (1H, m, H₇), 6.53 (1H, s, H₁), 1.38 (9H, s, ^tBu); ¹³C NMR (DMSO- d_6): 177.8 (q, J_{C-F} =34.4 Hz, $CCOCF_3$, 148.3, 138.2, 123.8, 118.6, 118.5, 116.7 (q, $J_{C-F}=$ 293.8 Hz, COCF₃), 116.2, 115.8, 103.2, 32.3 (C(CH₃)₃), 30.8 $(C(CH_3)_3)$; elemental analysis calcd (%) for $C_{14}H_{13}BrF_3NO$ (348.17): C 48.30, H 3.76, N 4.02; found: C 48.47, H 3.68, N 4.21.

4.4. Dimethyl 3-tert-butyl-4-methylpyrrolo[2,1,5-cd]*indolizine-1,2-dicarboxylate* (**6**) *by* [8+2] *cycloaddition reaction*

Dimethyl acetylendicarboxylate (0.170 g, 0.146 mL, 1 mmol) was added to a solution of bromoindolizine **3d** (0.266 g, 1.0 mmol) in anhydrous toluene (10 mL) at room temperature. The mixture was heated to 80 °C and kept at this temperature for 2 h with stirring. The mixture was allowed

to cool to room temperature, the organic solvent was evaporated, and the crude product was purified by column chromatography on silica gel (eluent hexane/CHCl₃: 9:1). The cycl[3.2.2]azine **6** was isolated as a deep yellow solid (0.260 g, 87%). Mp: 121-123 °C; IR (Nujol): 1745, 1700, 1545 cm⁻¹; ¹H NMR: δ =8.27 (1H, d, H₆, J₆₇=8.0 Hz), 7.96 (1H, d, H₈, J₇₈=6.8 Hz), 7.91-7.86 (1H, m, H₇), 3.94 (6H, s, 2COOMe), 2.76 (3H, s, Me), 1.57 (9H, s, ^tBu); ¹³C NMR (DMSO-d₆): 167.5 (COOCH₃), 163.8 (COOCH₃), 142.7, 133.1, 127.1, 125.2, 124.5, 122.0, 121.9, 115.1, 112.0, 108.6, 52.9 (COOCH₃), 51.7 (COOCH₃), 33.9 (C(CH₃)₃), 31.1 (C(CH₃)₃), 12.2 (C(4)-CH₃); MS m/z (%) 327 (66), 312 (6), 296 (20), 282 (5), 281 (18), 280 (100), 248 (6), 191 (6), 178 (8), 110 (9), 96 (5), 43 (11); elemental analysis calcd (%) for C₁₉H₂₁NO₄ (327.38): C 69.71, H 6.47, N 4.28; found: C 69.62, H 6.43, N 4.18.

4.5. Parallel cross-coupling of 5-Br(I)-indolizines with arylboronic acids

The experiments were performed in a SynCore[™] module. The solutions of 5-Br(I)-indolizine derivative (1 mmol), arylboronic acid (1.1 mmol), and K₂CO₃ (2 mmol) in pure 1,4-dioxane (7 mL) and water (1 mL) at room temperature were placed in 24 Syncore flasks under a nitrogen atmosphere, and a solution of 0.1 M PdCl₂ in water (0.05 mL, 0.5 mol %) was added to each flask. The flasks were shaken and heated at 80 °C for 24 h. The flasks were cooled to room temperature and palladium black was removed by parallel filtration using a Buchi filtration unit under a nitrogen atmosphere. The filtrates were concentrated by parallel evaporation and water (5 mL) was added to each flask. Then the mixtures were manually extracted with CHCl₃, the organic layers were dried over anhydrous Na₂SO₄, and evaporated. The residues were purified by column chromatography on silica gel. The parallel procedure was repeated for other 12 combinations of indolizines and boronic acids.

4.5.1. 5-(4-Methoxyphenyl)-2-tert-butylindolizine (7a)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **7a** from 4-methoxyphenylboronic acid and 5-bromoindolizine **3b** (70%) or 5-iodoindolizine **4b** (76%) as a white solid. Mp: 113–115 °C; ¹H NMR: δ = 7.54–7.52 (2H, m, 5-Ar), 7.19 (1H, d, H₆, J₆₇=8.9 Hz), 7.08 (1H, s, H₃), 7.05–7.03 (2H, m, 5-Ar), 6.67–6.64 (1H, m, H₇), 6.32 (1H, s, H₁), 6.26 (1H, d, H₈, J₇₈=5.0 Hz), 3.87 (3H, s, OMe), 1.28 (9H, s, ¹Bu); elemental analysis calcd (%) for C₁₉H₂₁NO (279.38): C 81.68, H 7.58, N 5.01; found: C 81.33, H 7.84, N 5.23.

4.5.2. 5-Phenyl-2-tert-butylindolizine (7b)

Column chromatography of residue using hexane as an eluent yielded **7b** from phenylboronic acid and 5-bromoindolizine **3b** (73%) or 5-iodoindolizine **4b** (80%) as a white solid. Mp: 68–70 °C; ¹H NMR: δ =7.62–7.60 (2H, m, 5-Ph), 7.52– 7.44 (3H, m, 5-Ph), 7.23 (1H, d, H₆, J₆₇=8.7 Hz), 7.10 (1H, s, H₃), 6.69–6.65 (1H, m, H₇), 6.35 (1H, s, H₁), 6.30 (1H, d, H₈, J_{78} =7.9 Hz), 1.28 (9H, s, 'Bu); elemental analysis calcd (%) for C₁₈H₁₉N (249.35): C 86.70, H 7.68, N 5.62; found: C 86.47, H 8.01, N 5.88.

4.5.3. 5-(4-Trifluoromethylphenyl)-2-tert-butylindolizine (*7c*)

Column chromatography of residue using hexane as an eluent yielded **7c** from 4-trifluoromethylphenylboronic acid and 5-bromoindolizine **3b** (86%) or 5-iodoindolizine **4b** (97%) as a yellow-green solid. Mp: 123–125 °C; ¹H NMR: δ =7.87–7.86 (4H, m, 5-Ar), 7.28 (1H, d, H₆, *J*₆₇=9.0 Hz), 7.11 (1H, s, H₃), 6.69–6.65 (1H, m, H₇), 6.39 (1H, s, H₁), 6.37 (1H, d, H₈, *J*₇₈=6.1 Hz), 1.28 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₁₉H₁₈F₃N (317.35): C 71.91, H 5.72, N 4.41; found: C 71.63, H 5.98, N 4.67.

4.5.4. 5-(2-Benzofuranyl)-2-tert-butylindolizine (7d)

Column chromatography of residue using hexane as an eluent yielded **7d** from 2-benzofuranylboronic acid and 5-bromoindolizine **3b** (72%) or 5-iodoindolizine **4b** (84%) as a light yellow solid. Mp: 76–78 °C; ¹H NMR: δ =7.78 (1H, s, H₃), 7.70 (1H, d, 5-Ar, *J*=7.2 Hz), 7.58 (1H, d, 5-Ar, *J*=7.7 Hz), 7.50 (1H, s, 5-H₃), 7.41–7.34 (2H, m, 5-Ar), 7.31–7.27 (1H, m, 5-Ar), 7.12 (1H, d, H₈, *J*₇₈=7.0 Hz), 6.77–6.74 (1H, m, H₇), 6.49 (1H, s, H₁), 1.39 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₂₀H₁₉NO (289.37): C 83.01, H 6.62, N, 4.84; found: C 82.74, H 6.91, N 5.09.

4.5.5. 5-(3,4-Dichlorophenyl)-2-tert-butylindolizine (7e)

Column chromatography of residue using hexane as an eluent yielded **7e** from 3,4-dichlorophenylboronic acid and 5-bromoindolizine **3b** (82%) or 5-iodoindolizine **4b** (93%) as a yellow solid. Mp: 81–83 °C; ¹H NMR: δ =7.78 (1H, s, 5-H₂), 7.70 (1H, d, 5-H_{2'}, *J*=7.4 Hz), 7.62–6.59 (1H, m, 5-H_{3'}), 7.28 (1H, d, H₆, *J*₆₇=8.8 Hz), 7.09 (1H, s, H₃), 6.69–6.66 (1H, m, H₇), 6.39 (1H, s, H₁), 6.36 (1H, d, H₈, *J*₇₈=7.6 Hz), 1.28 (9H, s, [']Bu); elemental analysis calcd (%) for C₁₈H₁₇Cl₂N (318.24): C 67.93, H 5.38, N 4.40; found: C 67.65, H 5.74, N 4.72.

4.5.6. 5-(3-Formylphenyl)-2-tert-butylindolizine (7f)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **7f** from 3-formylphenylboronic acid and 5-bromoindolizine **3b** (84%) or 5-iodoindolizine **4b** (96%) as a yellow solid. Mp: 62–65 °C; IR (neat): 1705, 1625, 1600, 1585 cm⁻¹; ¹H NMR: δ =10.05 (1H, s, CHO), 8.11 (1H, s, 5-H₂), 7.99 (1H, d, 5-H_{2'}, J=8.0 Hz), 7.91 (1H, d, 5-H_{4'}, J=8.0 Hz), 7.74–7.70 (1H, m, 5-H_{3'}), 7.27 (1H, d, H₆, J₆₇=8.9 Hz), 7.05 (1H, s, H₃), 6.70–6.66 (1H, m, H₇), 6.37 (1H, d, H₈, J₇₈=6.2 Hz), 6.36 (1H, s, H₁), 1.24 (9H, s, ¹Bu); ¹³C NMR (acetone-d₆): 192.6 (CHO), 141.7, 138.5, 137.5, 136.1, 135.2, 134.9, 130.9, 130.5, 128.0, 119.1, 117.8, 111.8, 107.3, 98.8, 32.1 (C(CH₃)₃), 31.6 (C(CH₃)₃); elemental analysis calcd (%) for C₁₉H₁₉NO (277.36): C 82.28, H 6.90, N 5.05; found: C 78.27, H 6.96, N 4.60. LSMS: 278; 279.²³

4.5.7. 5-(4-Methoxyphenyl)-6-methyl-2-tert-butylindolizine (7g)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **7g** from 4-methoxyphenylboronic acid and 5-bromoindolizine **3c** (49%) or 5-iodoindolizine **4c** (87%) as a white solid. Mp: 139–141 °C; ¹H NMR: δ = 7.28–7.25 (2H, m, 5-Ar), 7.15 (1H, d, H₇, J₇₈=8.5 Hz), 7.10–7.06 (2H, m, 5-Ar), 6.56 (1H, d, H₈, J₇₈=8.5 Hz), 6.51 (1H, s, H₃), 6.24 (1H, s, H₁), 3.86 (3H, s, OMe), 1.98 (3H, s, Me), 1.27 (9H, s, ¹Bu); elemental analysis calcd (%) for C₂₀H₂₃NO (293.41): C 81.87, H 7.90, N 4.77; found: C 82.02, H 7.83, N 4.92.

4.5.8. 6-Methyl-5-phenyl-2-tert-butylindolizine (7h)

Column chromatography of residue using hexane as an eluent yielded **7h** from phenylboronic acid and 5-bromoindolizine **3c** (44%) or 5-iodoindolizine **4c** (78%) as a white solid. Mp: 79–81°C; ¹H NMR: δ =7.59–7.55 (2H, m, 5-Ph), 7.51– 7.47 (1H, m, 5-Ph), 7.39–7.36 (2H, m, 5-Ph), 7.18 (1H, d, H₇, J_{78} =8.7 Hz), 6.58 (1H, d, H₈, J_{78} =8.7 Hz), 6.47 (1H, s, H₃), 6.27 (1H, s, H₁), 1.98 (3H, s, Me), 1.22 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₁₉H₂₁N (263.38): C 86.65, H 8.04, N 5.32; found: C 86.31, H 8.27, N 5.64.

4.5.9. 5-(4-Trifluoromethylphenyl)-6-methyl-2-tertbutylindolizine (**7i**)

Column chromatography of residue using hexane as an eluent yielded **7i** from 4-trifluoromethylphenylboronic acid and 5-bromoindolizine **3c** (47%) or 5-iodoindolizine **4c** (90%) as a yellow-green solid. Mp: 151–153 °C; ¹H NMR: δ =7.90–7.86 (2H, m, 5-Ar), 7.62–6.59 (2H, m, 5-Ar), 7.22 (1H, d, H₇, J₇₈=8.5 Hz), 6.60 (1H, d, H₈, J₇₈=8.5 Hz), 6.45 (1H, s, H₃), 6.30 (1H, s, H₁), 1.98 (3H, s, Me), 1.22 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₂₀H₂₀F₃N (331.37): C 72.49, H 6.08, N 4.23; found: C 72.24, H 6.33, N 4.57.

4.5.10. 5-(2-Benzofuranyl)-6-methyl-2-tert-butylindolizine (*7j*)

Column chromatography of residue using hexane as an eluent yielded **7j** from 2-benzofuranylboronic acid and 5-bromoindolizine **3c** (44%) or 5-iodoindolizine **4c** (79%) as a deep yellow solid. Mp: 77–79 °C; ¹H NMR: δ =7.71 (1H, d, 5-Ar, *J*=6.7 Hz), 7.58 (1H, d, H₇, *J*₇₈=8.6 Hz), 7.40–7.35 (1H, m, 5-Ar), 7.32–7.26 (2H, m, 5-Ar), 7.17 (1H, s, 5-H₃), 7.03 (1H, s, H₃), 6.56 (1H, d, H₈, *J*₇₈=8.6 Hz), 6.35 (1H, s, H₁), 2.25 (3H, s, Me), 1.27 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₂₁H₂₁NO (303.41): C 83.13, H 6.98, N, 4.62; found: C 83.08, H 6.81, N 4.81.

4.5.11. 5-(3,4-Dichlorophenyl)-6-methyl-2-tertbutylindolizine (**7k**)

Column chromatography of residue using hexane as an eluent yielded **7k** from 3,4-dichlorophenylboronic acid and 5-bromoindolizine **3c** (36%) or 5-iodoindolizine **4c** (87%) as a yellow solid. Mp: 153–155 °C; ¹H NMR: δ =7.83 (1H, s, 5-H₂), 7.75 (1H, d, 5-H₂', *J*=9.0 Hz), 7.60–7.56 (1H, m, 5-H₃'), 7.21 (1H, d, H₇, *J*₇₈=8.6 Hz), 6.58 (1H, d, H₈,

 J_{78} =8.6 Hz), 6.51 (1H, s, H₃), 6.30 (1H, s, H₁), 1.99 (3H, s, Me), 1.23 (9H, s, ^{*t*}Bu); elemental analysis calcd (%) for C₁₉H₁₉Cl₂N (332.28): C 68.68, H 5.76, N 4.22; found: C 68.85, H 5.75, N 4.27.

4.5.12. 5-(3-Formylphenyl)-6-methyl-2-tert-butylindolizine (71)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **71** from 3-formylphenylboronic acid and 5-bromoindolizine **3c** (52%) or 5-iodoindolizine **4c** (91%) as a yellow solid. Mp: 116–118 °C; IR (Nujol): 1690, 1600 cm⁻¹; ¹H NMR: δ =10.11 (1H, s, CHO), 8.06 (1H, d, 5-H_{2'}, *J*=6.9 Hz), 7.93 (1H, s, 5-H₂), 7.83–7.89 (1H, m, 5-H_{3'}), 7.71 (1H, d, 5-H_{4'}, *J*=7.5 Hz), 7.23 (1H, d, H₇, *J*₇₈=9.0 Hz), 6.61 (1H, d, H₈, *J*₇₈=8.6 Hz), 6.45 (1H, s, H₃), 6.30 (1H, s, H₁), 1.99 (3H, s, Me), 1.22 (9H, s, 'Bu); elemental analysis calcd (%) for C₂₀H₂₁NO (291.40): C 82.44, H 7.26, N 4.81; found: C 82.38, H 7.38, N 4.85.

4.5.13. 5-(4-Methoxyphenyl)-2-phenylindolizine (7m)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **7m** from 4-methoxyphenylboronic acid and 5-bromoindolizine **3a** (64%) or 5-iodoindolizine **4a** (87%) as a white solid. Mp: 146–148 °C; ¹H NMR: δ = 7.66–7.54 (5H, m), 7.37–7.26 (3H, m), 7.18–7.06 (3H, m), 6.75–6.72 (2H, m), 6.37 (1H, d, H₈, J₇₈=10.2 Hz), 3.88 (3H, s, OMe); elemental analysis calcd (%) for C₂₁H₁₇NO (299.37): C 84.25, H 5.72, N 4.68; found: C 84.06, H 5.98, N 4.91.

4.5.14. 2,5-Diphenylindolizine (7n)

Column chromatography of residue using hexane as an eluent yielded **7n** from phenylboronic acid and 5-bromoindolizine **3a** (41%) or 5-iodoindolizine **4a** (78%) as a white solid. Mp: 92–94 °C; ¹H NMR: δ =7.95–7.88 (2H, m), 7.73–7.67 (3H, m), 7.44–7.35 (5H, m), 7.24–7.22 (1H, m), 7.11–7.10 (1H, m), 7.01 (1H, s, H₁), 6.99–6.97 (1H, m), 6.66–6.64 (1H, m, H₇); elemental analysis calcd (%) for C₂₀H₁₅N (269.34): C 89.19, H 5.61, N 5.20; found: C 88.86, H 5.90, N 5.54.

4.5.15. 5-(4-Trifluoromethylphenyl)-2-phenylindolizine (70)

Column chromatography of residue using hexane as an eluent yielded **70** from 4-trifluoromethylphenylboronic acid and 5-bromoindolizine **3a** (32%) or 5-iodoindolizine **4a** (96%) as a white-green solid. Mp: 129–131 °C; ¹H NMR: δ =7.94–7.86 (4H, m), 7.63–7.58 (3H, m), 7.42 (1H, d, H₆, J_{67} =7.2 Hz), 7.33–7.29 (2H, m), 7.20–7.16 (1H, m), 6.82 (1H, s, H₁), 6.80–6.78 (1H, m, H₇), 6.49 (1H, d, H₈, J_{78} = 10.8 Hz); elemental analysis calcd (%) for C₂₁H₁₄F₃N (337.34): C 74.77, H 4.18, N 4.15; found: C 74.37, H 4.38, N 4.43.

4.5.16. 5-(2-Benzofuranyl)-2-phenylindolizine (7p)

Column chromatography of residue using hexane as an eluent yielded **7p** from 2-benzofuranylboronic acid and 5-bromoindolizine **3a** (68%) or 5-iodoindolizine **4a** (90%) as a deep yellow solid. Mp: 169–171 °C; ¹H NMR: δ =8.32 (1H, s, 5-H₃), 7.77–7.69 (4H, m), 7.63–7.61 (1H, m), 7.51–7.49 (1H, m), 7.40–7.35 (3H, m), 7.33–7.28 (1H, m), 7.25–7.20 (2H, m), 6.91 (1H, s, H₁), 6.84 (1H, m, H₇); elemental analysis calcd (%) for C₂₂H₁₅NO (309.36): C 85.41, H 4.89, N 4.53; found: C 85.28, H 5.06, N 4.71.

4.5.17. 5-(3,4-Dichlorophenyl)-2-phenylindolizine (7q)

Column chromatography of residue using hexane as an eluent yielded **7q** from 3,4-dichlorophenylboronic acid and 5-bromoindolizine **3a** (70%) or 5-iodoindolizine **4a** (87%) as a yellow solid. Mp: 142–144 °C; ¹H NMR: δ =7.83 (1H, d, 5-H₂, *J*=2.5 Hz), 7.75 (1H, d, 5-H_{2'}, *J*=8.4 Hz), 7.69–7.66 (1H, m, 5-H_{3'}), 7.61–7.58 (3H, m), 7.40 (1H, d, H₆, *J*₆₇= 10.8 Hz), 7.33–7.30 (2H, m), 7.20–7.16 (1H, m), 6.82 (1H, s, H₁), 6.78 (1H, m, H₇), 6.45 (1H, d, H₈, *J*₇₈=9.8 Hz); elemental analysis calcd (%) for C₂₀H₁₃Cl₂N (338.23): C 71.02, H 3.87, N 4.14; found: C 70.74, H 4.13, N 4.45.

4.5.18. 5-(3-Formylphenyl)-2-phenylindolizine (7r)

Column chromatography of residue using an eluent (hexane/CHCl₃; 9:1) yielded **7r** from 3-formylphenylboronic acid and 5-bromoindolizine **3a** (72%) or 5-iodoindolizine **4a** (95%) as a yellow solid. Mp: >132 °C (dec); IR (Nujol): 1695, 1605, 1580 cm⁻¹; ¹H NMR: δ =10.11 (1H, s, CHO), 8.23 (1H, s, 5-H₂), 8.07 (1H, d, 5-H_{2'}, J=7.4 Hz), 7.99 (1H, d, 5-H_{4'}, J=6.3 Hz), 7.81–7.77 (1H, m, 5-H_{3'}), 7.62–7.57 (2H, m), 7.44–7.16 (5H, m), 6.82 (1H, s, H₁), 6.77 (1H, m, H₇), 6.49 (1H, d, H₈, J₇₈=9.4 Hz); elemental analysis calcd (%) for C₂₁H₁₅NO (297.35): C 84.82, H 5.08, N 4.71; found: C 84.51, H 5.34, N 4.96.

Acknowledgements

This work was supported by Russian Foundation of Basic Research (RFBR Grant no. 07-03-00921).

Supplementary data

Supplementary data associated with this article can be found in the online version, at doi:10.1016/j.tet.2007.11.017.

References and notes

- Flitsch, W. Comprehensive Heterocyclic Chemistry; Katritzky, A. R., Ress, C. W., Eds.; Pergamon: Oxford, 1984; Vol. 4, p 443.
- Tielmann, P.; Hoenke, C. *Tetrahedron Lett.* 2006, 47, 261 and references therein.
- (a) Swinborne, P.-J.; Hunt, J. H.; Klinkert, G. Adv. Heterocycl. Chem. 1978, 23, 103; (b) Prostakov, N. S.; Baktybaev, O. B. Russ. Chem. Rev. 1975, 44, 1649 (in Russian); (c) Mosby, W. L. Heterocyclic Systems with Bridgehead Nitrogen Atom; Interscience: New York, NY, 1961; Part I, p 239; (d) Borrows, E. T.; Holland, D. O. Chem. Rev. 1948, 42, 611.
- 4. Longuet-Higgins, H. C.; Coulson, C. A. Trans. Faraday Soc. 1947, 43, 87.
- Fukui, K.; Yonezawa, T.; Nagata, C.; Shirgu, H. J. Chem. Phys. 1954, 22, 1433.
- Kost, A. N.; Sagitullin, R. S.; Gromov, S. P. *Heterocycles, Special Issue* 1977, 7, 997.

- 7. Babaev, E. V.; Vasilevich, N. I.; Ivushkina, A. S. Beilstein J. Org. Chem. 2005, 1, 9.
- We thank the referee for paying attention to the recent report on the preparation of 3-anilino-1-cyano derivatives of 5-Cl(F)-indolizines (by Ugi-reaction) and their nucleophilic substitution at C-5: Bedjeguelal, K.; Bienaymé, H.; Dumoulin, A.; Poigny, S.; Schmitt, P.; Tam, E. *Bioorg. Med. Chem. Lett.* 2006, *16*, 3998.
- 9. Tschitschibabin, A. E., Patent DE464481, 1928.
- Babaev, E. V.; Efimov, A. V.; Maiboroda, D. A. Chem. Heterocycl. Compd. (Engl. Transl.) 1995, 31, 962.
- 11. Babaev, E. V.; Pasichnichenko, K. Y.; Rybakov, V. B.; Zhukov, S. G. Chem. Heterocycl. Compd. (Engl. Transl.) 2000, 36, 1192.
- Rybakov, V. B.; Babaev, E. V.; Pasichnichenko, K. Y. Crystallogr. Rep. (Engl. Transl.) 2002, 47, 622.
- Terent'ev, P. B.; Vinogradova, S. M.; Kost, A. N. Chem. Heterocycl. Compd. (Engl. Transl.) 1980, 16, 506.
- 14. Seregin, I. V.; Gevorgyan, V. J. Am. Chem. Soc. 2006, 128, 12050.
- 15. Renard, M.; Gubin, J. Tetrahedron Lett. 1992, 33, 4433.

- Kuznetsov, A. G.; Bush, A. A.; Rybakov, V. B.; Babaev, E. V. Molecules 2005, 10, 1074.
- 17. Tschischibabin, A. E. Ber. Dtsch. Chem. Ges. 1927, 60, 1607.
- (a) Armarego, W. L. F. J. Chem. Soc. 1964, 11, 4226; (b) Reid, D. H.; Webster, R. G.; McKenzie, S. J. Chem. Soc., Perkin Trans. 1 1979, 2334.
- In the case of C-1 substitution one would expect strong downfield shift of the signal of *peri*-proton H₈, see review: Babaev, E. V.; Torocheshnikov, V. N.; Bobrovsky, S. I. *Chem. Heterocycl. Compd. (Engl. Transl.)* **1995**, *31*, 1079.
- Simonyan, V. V.; Zinin, A. I.; Babaev, E. V.; Jug, K. J. Phys. Org. Chem. 1998, 11, 201.
- 21. Taylor, R. J. K. Organocopper Reagents; Oxford University Press: New York, NY, 1994; p 52.
- Babaev, E.; Belykh, E.; Dlinnykh, I.; Tkach, N.; Bender, W.; Shoenenberger, G. *Best@Buchi Synthesis* 2004, 34, 4.
- 23. The aldehyde **7f** (in contrast to its analogs **7l**, **7r**) was very unstable in air and quickly decomposed to a green liquid. Although its ¹H NMR spectra were in full agreement with the structure, LCMS data confirmed that **7f** contains an impurity (12%) with an intractable peak M=404.