organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Victor B. Rybakov,* Vadim L. Alifanov, Pavel V. Gormay and Eugene V. Babaev

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail: rybakov20021@yandex.ru

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.002 Å R factor = 0.036 wR factor = 0.086 Data-to-parameter ratio = 15.4

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

1-[(4-Chlorobenzoyl)methyl]-4,6-dimethyl-2(1*H*)-pyrimidone

In the title molecule, $C_{14}H_{13}ClN_2O_2$, all bond lengths and angles show normal values. The mean planes of the heterocyclic ring and the carbonyl group make a dihedral angle of 81.38 (5)°.

Received 3 July 2006 Accepted 8 August 2006

Comment

We have previously described the crystal structures of a series of *N*-phenacyl-2-pyridones (Albov *et al.*, 2004*a*,*b*, 2005) and the structure of *N*-phenacyl-2-pyrimidone (Rybakov *et al.*, 2006). In this communication, we report the synthesis and crystal structure of a homologue of these compounds, the title compound, (2), *N*-phenacyl-4,6-dimethyl-2-pyrimidone.

Interestingly, in the study of the phenacylation of sterically hindered 4,6-dimethylpyrimidone, only the *N*-isomer has been isolated, in poor yield (Ivanov & Reznik, 1983; Buchan *et al.*, 1978). We have found that, in the reaction of 4,6-dimethyl-2pyrimidone, (1), with phenacyl bromide in the presence of K_2CO_3 , a mixture of two products is formed, namely *N*phenacylpyrimidone (*N*-isomer) and *O*-phenacylpyrimidone (*O*-isomer). With the goal of decreasing the yield of the *O*isomer, we have used the sodium salt in the reaction with *p*chlorophenacyl bromide. The only product observed in this reaction was the title compound, (2).

In compound (2) (Fig. 1), all bond lengths and angles show normal values (Cambridge Structural Database; Version 5.27; Allen, 2002). In the pyrimidone (P) ring, N1/C2/N3/C4–C6, the single and double bonds alternate (Table 1), allowing some degree of conjugation. The mean planes of P and the carbonyl group C7/C8/O8/C9 make a dihedral angle of 81.38 (5)°. The torsion angle O8–C8–C9–C14 = 4.1 (3)° indicates conjugation with the benzoyl fragment.

Experimental

4,6-Dimethyl-2-pyrimidone hydrochloride (5 g, 0.031 mol) and NaOH (1.25 g 0.031 mol) were dissolved in water (30 ml), stirred for 5 min and evaporated *in vacuo*. The residue was dissolved in CHCl₃ (50 ml), refluxed for 5 min and filtered. The filtrate was evaporated *in vacuo* to give the dimethylpyrimidone as the free base (3.8 g, 100%). The resulting 4,6-dimethyl-2-pyrimidone was added to a solution of sodium methylate (prepared by dissolving 0.031 mol sodium in 15 ml

© 2006 International Union of Crystallography All rights reserved

Figure 1

The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.

of anhydrous methanol), and the mixture was stirred for 30 min. The resulting precipitate of the sodium salt of dimethylpyrimidone was filtered off (4.40 g, 98%). This sodium salt of 2-pyrimidone (1.5 g, 0.01 mol) was suspended in benzene (10 ml). *p*-Chlorophenacyl bromide was then added (1.9 g, 0.0067 mol) and the mixture was stirred for 6 d at room temperature. The precipitate which formed was filtered off, and washed with water and then with diethyl ether. The product was isolated by suction and recrystallized from acetonitrile (yield 33%, m.p. 445–447 K).

Crystal data

 $\begin{array}{l} C_{14}H_{13}ClN_2O_2\\ M_r = 276.71\\ Monoclinic, \ P2_1/n\\ a = 7.1975 \ (8) \ \AA\\ b = 9.3817 \ (10) \ \AA\\ c = 19.422 \ (3) \ \AA\\ \beta = 92.314 \ (9)^\circ\\ V = 1310.4 \ (3) \ \AA^3 \end{array}$

Data collection

Enraf–Nonius CAD-4 diffractometer ω scans Absorption correction: none 2760 measured reflections 2683 independent reflections

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.036$ $wR(F^2) = 0.086$ S = 0.962683 reflections 174 parameters Z = 4 D_x = 1.403 Mg m⁻³ Cu K α radiation μ = 2.58 mm⁻¹ T = 293 (2) K Prism, colourless 0.2 × 0.2 × 0.2 mm

1907 reflections with $I > 2\sigma(I)$ $R_{int} = 0.090$ $\theta_{max} = 74.9^{\circ}$ 1 standard reflections frequency: 60 min intensity decay: 4%

H-atom parameters constrained $w = 1/[\sigma^2(F_o^2) + (0.0422P)^2]$ where $P = (F_o^2 + 2F_c^2)/3$ $(\Delta/\sigma)_{max} = 0.003$ $\Delta\rho_{max} = 0.12 \text{ e } \text{Å}^{-3}$ $\Delta\rho_{min} = -0.14 \text{ e } \text{Å}^{-3}$

Table 1 Selected geometric parameters (Å, °).

1.3607 (18)	N3-C4	1.307 (2)
1.4116 (19)	C4-C5	1.402 (2)
1.4648 (16)	C4-C41	1.502 (2)
1.2210 (18)	C5-C6	1.3586 (19)
1.3645 (18)	C6-C61	1.493 (2)
122.06 (12)	C4-N3-C2	119.31 (15)
123.33 (13)	N3-C4-C5	123.56 (14)
114.45 (12)	C6-C5-C4	118.71 (15)
123.27 (16)	C5-C6-N1	118.13 (15)
118.50 (14)	N1-C7-C8	110.70 (12)
118.23 (14)		
	1.3607 (18) 1.4116 (19) 1.4648 (16) 1.2210 (18) 1.3645 (18) 122.06 (12) 123.33 (13) 114.45 (12) 123.27 (16) 118.50 (14) 118.23 (14)	

All H atoms were positioned geometrically (C–H = 0.93–0.97 Å) and refined using a riding model, with $U_{\rm iso}({\rm H}) = 1.2U_{\rm eq}$ (1.5 $U_{\rm eq}$ for CH₃) of the parent atom.

Data collection: *CAD-4 EXPRESS*; cell refinement: *CAD-4 EXPRESS* (Enraf–Nonius, 1994); data reduction: *XCAD4* (Harms & Wocadlo, (1995); program(s) used to solve structure: *SHELXS97* (Sheldrick, 1997); program(s) used to refine structure: *SHELXL97* (Sheldrick, 1997); molecular graphics: *ORTEP-3 for Windows* (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for the use of the Cambridge Structural Database.

References

- Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004a). Acta Cryst. E60, o1098–o1099.
- Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004b). Acta Cryst. E60, 01952–01953.
- Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2005). *Crystallogr. Rep.* **50**, 660–664.
- Allen, F. H. (2002). Acta Cryst. B58, 380-388.
- Buchan, R., Frazer, M. & Shand, C. (1978). J. Org. Chem. 43, 3544-3547.
- Enraf-Nonius (1994). *CAD-4 Software*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
- Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
- Ivanov, V. B., Reznik, V. S. & Efremov, Yu. Ya. (1983). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 32, 2130–2134.
- Rybakov, V. B., Tsisevich, A. A. V., Nikitin, K. L., Alifanov, V. & Babaev, E. V. (2006). Acta Cryst. E62, 02546–02547.
- Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.