Acta Crystallographica Section E

Structure Reports
 Online

ISSN 1600-5368

Victor B. Rybakov,* Vadim L. Alifanov, Pavel V. Gormay and Eugene V. Babaev

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
rybakov20021@yandex.ru

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.036$
$w R$ factor $=0.086$
Data-to-parameter ratio $=15.4$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

[^0]
1-[(4-Chlorobenzoyl)methyl]-4,6-dimethyl-2(1H)-pyrimidone

In the title molecule, $\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$, all bond lengths and angles show normal values. The mean planes of the heterocyclic ring and the carbonyl group make a dihedral angle of $81.38(5)^{\circ}$.

Comment

We have previously described the crystal structures of a series of N-phenacyl-2-pyridones (Albov et al., 2004a,b, 2005) and the structure of N-phenacyl-2-pyrimidone (Rybakov et al., 2006). In this communication, we report the synthesis and crystal structure of a homologue of these compounds, the title compound, (2), N-phenacyl-4,6-dimethyl-2-pyrimidone.

Interestingly, in the study of the phenacylation of sterically hindered 4,6-dimethylpyrimidone, only the N-isomer has been isolated, in poor yield (Ivanov \& Reznik, 1983; Buchan et al., 1978). We have found that, in the reaction of 4,6-dimethyl-2pyrimidone, (1), with phenacyl bromide in the presence of $\mathrm{K}_{2} \mathrm{CO}_{3}$, a mixture of two products is formed, namely N phenacylpyrimidone (N -isomer) and O -phenacylpyrimidone (O-isomer). With the goal of decreasing the yield of the O isomer, we have used the sodium salt in the reaction with p chlorophenacyl bromide. The only product observed in this reaction was the title compound, (2).

In compound (2) (Fig. 1), all bond lengths and angles show normal values (Cambridge Structural Database; Version 5.27; Allen, 2002). In the pyrimidone (P) ring, N1/C2/N3/C4-C6, the single and double bonds alternate (Table 1), allowing some degree of conjugation. The mean planes of P and the carbonyl group $\mathrm{C} 7 / \mathrm{C} 8 / \mathrm{O} 8 / \mathrm{C} 9$ make a dihedral angle of $81.38(5)^{\circ}$. The torsion angle $\mathrm{O} 8-\mathrm{C} 8-\mathrm{C} 9-\mathrm{C} 14=4.1(3)^{\circ}$ indicates conjugation with the benzoyl fragment.

Experimental

4,6-Dimethyl-2-pyrimidone hydrochloride ($5 \mathrm{~g}, \quad 0.031 \mathrm{~mol}$) and $\mathrm{NaOH}(1.25 \mathrm{~g} 0.031 \mathrm{~mol})$ were dissolved in water $(30 \mathrm{ml})$, stirred for 5 min and evaporated in vacuo. The residue was dissolved in CHCl_{3} (50 ml), refluxed for 5 min and filtered. The filtrate was evaporated in vacuo to give the dimethylpyrimidone as the free base ($3.8 \mathrm{~g}, 100 \%$). The resulting 4,6-dimethyl-2-pyrimidone was added to a solution of sodium methylate (prepared by dissolving 0.031 mol sodium in 15 ml

Figure 1
The structure of the title compound, showing the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
of anhydrous methanol), and the mixture was stirred for 30 min . The resulting precipitate of the sodium salt of dimethylpyrimidone was filtered off $(4.40 \mathrm{~g}, 98 \%)$. This sodium salt of 2-pyrimidone $(1.5 \mathrm{~g}$, 0.01 mol) was suspended in benzene $(10 \mathrm{ml})$. p-Chlorophenacyl bromide was then added $(1.9 \mathrm{~g}, 0.0067 \mathrm{~mol})$ and the mixture was stirred for 6 d at room temperature. The precipitate which formed was filtered off, and washed with water and then with diethyl ether. The product was isolated by suction and recrystallized from acetonitrile (yield 33%, m.p. 445-447 K).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{13} \mathrm{ClN}_{2} \mathrm{O}_{2}$	$Z=4$
$M_{r}=276.71$	$D_{x}=1.403 \mathrm{Mg} \mathrm{m}^{-3}$
Monoclinic, $P 2_{1} / n$	$\mathrm{CuK} \mathrm{\alpha}$ radiation
$a=7.1975(8) \AA$	$\mu=2.58 \mathrm{~mm}^{-1}$
$b=9.3817(10) \AA$	$T=293(2) \mathrm{K}$
$c=19.422(3) \AA$	Prism, colourless
$\beta=92.314(9)^{\circ}$	$0.2 \times 0.2 \times 0.2 \mathrm{~mm}$
$V=1310.4(3) \AA^{3}$	

Data collection

Enraf-Nonius CAD-4
diffractometer
ω scans
Absorption correction: none 2760 measured reflections 2683 independent reflections

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.036$
$w R\left(F^{2}\right)=0.086$
$S=0.96$
2683 reflections
174 parameters

[^1]Table 1
Selected geometric parameters $\left(\AA,^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 6$	$1.3607(18)$	$\mathrm{N} 3-\mathrm{C} 4$	$1.307(2)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.4116(19)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.402(2)$
$\mathrm{N} 1-\mathrm{C} 7$	$1.4648(16)$	$\mathrm{C} 4-\mathrm{C} 41$	$1.502(2)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.2210(18)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.3586(19)$
$\mathrm{C} 2-\mathrm{N} 3$	$1.3645(18)$	$\mathrm{C} 6-\mathrm{C} 61$	$1.493(2)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$122.06(12)$	$\mathrm{C} 4-\mathrm{N} 3-\mathrm{C} 2$	$119.31(15)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 7$	$123.33(13)$	$\mathrm{N} 3-\mathrm{C} 4-\mathrm{C} 5$	$123.56(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 7$	$114.45(12)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$118.71(15)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 3$	$123.27(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{N} 1$	$118.13(15)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$118.50(14)$	$\mathrm{N} 1-\mathrm{C} 7-\mathrm{C} 8$	$110.70(12)$
$\mathrm{N} 3-\mathrm{C} 2-\mathrm{N} 1$	$118.23(14)$		

All H atoms were positioned geometrically ($\mathrm{C}-\mathrm{H}=0.93-0.97 \AA$) and refined using a riding model, with $U_{\text {iso }}(\mathrm{H})=1.2 U_{\text {eq }}\left(1.5 U_{\text {eq }}\right.$ for CH_{3}) of the parent atom.

Data collection: CAD-4 EXPRESS; cell refinement: CAD-4 EXPRESS (Enraf-Nonius, 1994); data reduction: XCAD4 (Harms \& Wocadlo, (1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for the use of the Cambridge Structural Database.

References

Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004a). Acta Cryst. E60, o1098-o1099.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004b). Acta Cryst. E60, o1952-o1953.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2005). Crystallogr. Rep. 50, 660-664.
Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Buchan, R., Frazer, M. \& Shand, C. (1978). J. Org. Chem. 43, 3544-3547.
Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Ivanov, V. B., Reznik, V. S. \& Efremov, Yu. Ya. (1983). Bull. Acad. Sci. USSR Div. Chem. Sci. (Engl. Transl.), 32, 2130-2134.

Rybakov, V. B., Tsisevich, A. A. V., Nikitin, K. L., Alifanov, V. \& Babaev, E. V. (2006). Acta Cryst. E62, o2546-o2547.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

[^0]: (C) 2006 International Union of Crystallography All rights reserved

[^1]: H -atom parameters constrained
 $w=1 /\left[\sigma^{2}\left(F_{\mathrm{o}}{ }^{2}\right)+(0.0422 P)^{2}\right]$
 where $P=\left(F_{\mathrm{o}}{ }^{2}+2 F_{\mathrm{c}}{ }^{2}\right) / 3$
 $(\Delta / \sigma)_{\max }=0.003$
 $\Delta \rho_{\max }=0.12 \mathrm{e}_{\AA^{-3}}$
 $\Delta \rho_{\min }=-0.14 \mathrm{e}^{-3}$

