УДК 546.32'268.5:547.789.6+547.821.3;543.422.8

Новые мезоионные системы ряда азолопиридина Сообщение 2.* Синтез, строение и биологическая активность солей 2-аминотиазоло[3,2-*a*]пиридиния и тиазоло[3,2-*a*]пиридиний-2-имидатов

Е. В. Бабаев,^а* А. А. Буш,^а И. А. Орлова,^а В. Б. Рыбаков,^а И. Иватаки^б

^а Московский государственный университет им. М. В. Ломоносова, Химический факультет, Российская Федерация, 119992 Москва, Ленинские горы, 1, стр. 3. Факс: (095) 932 8846. E-mail: babaev@org.chem.msu.su ^бКомпания Нипон Сода, Лаборатория Флориды, США**

Предложен способ синтеза солей 2-аминотиазоло[3,2-*a*]пиридиния **8** реакцией солей 2-галоген-*N*-фенацилпиридиния с KSCN. Методом ионной хроматографии изучен состав анионов в ряде солей **8**. Ацилированием солей **8** получены представители неизвестной ранее бициклической мезоионной системы тиазоло[3,2-*a*]пиридиний-2-имидата **9**. Методом РСА изучено пространственное строение тиоцианата 2-амино-3-(*n*-бромбензоил)тиазоло[3,2-*a*]пиридиния и *N*-трифторацетил-3-(*n*-нитробензоил)тиазоло[3,2-*a*]пиридиний-2-имидата.

Ключевые слова: мезоионные гетероциклы, соли *N*-фенацилпиридиния, роданид калия, тиазол, биологическая активность, ионная хроматография.

Бициклические мезоионные тиазолопиридиний-2-имидаты 1 до сих пор не известны, хотя их моноциклические прототипы 2, а также изоструктурные имидаты ряда имидазопиридиния 3 описаны в литературе^{2,3}.

Имеются неподтвержденные данные об образовании бензоаналога системы **1** в результате реакции 1,3-диполярного циклоприсоединения. Так, в ранней работе⁴ аддукту изохинолиниевого илида с фенилизотиоцианатом была приписана тиазольная структура **4a** ($\mathbf{R} = p$ -NO₂Ph) без каких-либо спектральных обоснований. Между тем в более поздних работах было показано⁵, что в реакциях илидов *N*-фенацилизохинолиния с органическими изотиоцианатами за-

мыкается имидазольный, а не тиазольный цикл с образованием структур **4b** (R = COAr). Следовательно, более вероятно, что и циклоаддукт 4а имеет имидазольный тип **4b** ($\mathbf{R} = p$ -NO₂Ph). Сходные пиридиниевые илиды легко образуют с изотиоцианатами аддукты бетаинового строения (например, 5, R = CN), однако дальнейшая окислительная циклизация приводит (как и в предыдущем случае) к замыканию имидазольного (6), а не тиазольного (1) цикла⁶ (схема 1). Образование именно имидазольного цикла в реакции изотиоцианатов с различными пиридиниевыми илидами⁷⁻⁹ было окончательно доказано данными PCA для соединения 6 (R' = Ph, R = 2-бензимидазолил). Таким образом, конденсированные тиазолиевые имидаты 1 продолжают оставаться синтетически недоступным классом.

Схема 1

Синтез мезоионной системы 1. Нами обнаружен новый подход (схема 2) к синтезу мезоионных имидатов 9 (первых представителей структурного типа 1) на основе неизвестной ранее гетероциклизации солей 2-галоген-*N*-фенацилпиридиния 7 под действием KSCN с последующим ацилированием образующихся аминогетероциклов 8.

^{*} Сообщение 1 см. лит.¹

^{**} Nippon Soda Co., Florida Laboratory, 13709 Progress Blvd, 32615, Alachua, Florida, USA.

^{© 2005 «}Известия Академии наук. Серия химическая», Российская академия наук, Отделение химии и наук о материалах Российской академии наук, Институт органической химии им. Н. Д. Зелинского Российской академии наук

X = Br, Cl, Y = Cl, Br, SCN, ClO₄ или HSO₄. **9:** Ar = p-NO₂C₆H₄, R = Me (**a**), CF₃ (**b**)

Примечание. Заместители для соединений **7а—h**, **8а—h** указаны в таблице 1.

Таблица 1. Характеристики перхлоратов 8

Соединение	Ar	Выход (%)	Т.пл./°С
8a ¹⁰	$4-NO_2C_6H_4$	77	247-248
8b	$4 - F\tilde{C}_6H_4$	57	158-160
8c	$4-ClC_6H_4$	89	180-182
8d	$4-BrC_6H_4$	83	210-211
8e	$3-BrC_6H_4$	79	140-141
8f	$2,4-Me_2C_6H_3$	35	128-130
8g	$3,4-Me_2C_6H_3$	85	175-176
8h	Ph	83	126-127

Первая стадия превращения (ранее обнаруженная нами лишь для случая $7a \rightarrow 8a$)¹⁰ протекает с высоким выходом (как правило, 60—90%, см. табл. 1) для различных солей 2-хлорпиридиния 7b—h.

Реакция протекала при нагревании в течение 5—10 мин в гетерогенной (ацетонитрил) или гомогенной среде (водный этанол) с образованием малорастворимых соединений, которые переводили в перхлораты 8. В спектрах ЯМР ¹Н перхлоратов 8 (табл. 2) имеются сигналы протонов пиридинового фрагмента и ароильного остатка, однако в них отсутствуют сигналы метиленовой группы исходных солей 7. В области 7.9—8.2 м.д. появляется синглет группы NH₂, исчезающий при добавлении D₂O.

Наблюдаемое в этой реакции селективное замыкание тиазольного (а не имидазольного, как в структурах 4b и 6) кольца связано, по-видимому, с первоначальным замещением атома галогена в солях 7 на тиоцианатную группу и последующей циклизацией 2-тиоцианатопиридиниевых солей. Особо подчеркнем новизну обнаруженного типа замыкания тиазольного кольца. Хотя тиоцианаты и изотиоцианаты классические реагенты для построения тиазольного кольца по типу «SCN + CC», однако дизайн найденной циклизации относится к другой комбинации «SC-фрагмент тиоцианата + CNC-фрагмент пиридиниевой соли», не имеющей прецедентов (см. схему 1). Описано¹¹ лишь сходное по дизайну замыкание тиадиазольного цикла при реакции солей N-аминопиридиния и KSCN.

Получаемые соли 8 растворимы в щелочах, однако из этих растворов не удается выделить устойчивых ковалентных соединений со структурой имидатов 1. Попытки ввести в аминогруппу дополнительный электроноакцепторый фрагмент реакциями солей 8 с хлористым бензоилом или пикрилхлоридом (в присутствии оснований) привели к образованию трудноразделимых смесей. Оказалось, что при обработке перхлората 8а ангидридами уксусной или трифторуксусной кислот образуются мезоионные имидаты 9а, b (схема 2). Сигнал аминогруппы, присутствующий в спектре ЯМР¹Н соли 8а, полностью исчезает при переходе к соединениям 9а, b (за счет ацилирования аминогруппы и одновременного отщепления второго протона). Другой спектральной особенностью соединений 9 является небольшой слабопольный сдвиг сигнала протона H(5), которого трудно ожидать при переходе от катиона к ковалентной (хотя и мезоионной) молекуле. Строение имидата 9а однозначно доказано методом РСА (рис. 1).

Таблица 2. Данные ЯМР ¹Н перхлоратов 8 (ДМСО-d₆, 360 МГц, δ, м.д., *J*/Гц)

Соеди- нение	Ar	Н(5), д (J _{5,6})	Н(8), д (J _{7,8})	Н(7), м	NH ₂ , уш.с	Н(6), м	H (Ar/Me)
8a ¹⁰	4-NO ₂ C ₆ H ₄	9.24 (6.7)	8.63 (8.0)	8.15	8.56	7.78	8.38, 8.02
8b	$4-FC_6H_4$	9.21 (7.0)	8.59 (8.6)	8.10	8.05	7.76	7.89, 7.31
8c	$4-ClC_6H_4$	9.23 (6.8)	8.57 (8.5)	8.00-8.20	8.10	7.70-7.90	7.80, 7.58
8d	$4-BrC_6H_4$	9.23 (6.2)	8.58 (8.2)	8.11	8.11	7.70-7.80	7.70-7.80
8e	$3-BrC_6H_4$	9.22 (6.8)	8.58 (8.1)	8.11	8.11	7.70-7.85	7.94 (M, 1 H, H(2'), $J_{2',4'} = J_{2',6'} = 1.7$); 7.70–7.85 (M, 2 H, H(4'), H(6'));
8f	2,4-Me ₂ C ₆ H ₃	9.29 (6.8)	8.60 (9.2)	8.11	8.04	7.75	7.50 (M, 1 H, H(5 [']), $J_{4',5'} = J_{5',6'} = 7.8$) 7.36 (μ , 1 H, H(6 [']), $J_{5',6'} = 7.8$); 7.24 (ym.c, 1 H, H(3 ['])); 7.16 (ym. μ , 1 H, H(5 [']),
8g	3,4-Me ₂ C ₆ H ₃	9.16 (6.7)	8.57 (8.2)	8.09	7.91	7.73	$J_{5',6'} = 7.8$; 2.06, 2.41 (of a c, no 3 H, Me) 7.57 (c, 1 H, H(2')); 7.52 (π , 1 H, H(6'), $J_{5',6'} = 7.7$); 7.31 (π , 1 H, H(5'), $J_{5',6'} = 7.7$);
8h	Ph	9.16 (6.5)	8.63 (8.3)	8.10	8.10	7.50-7.80	2.37, 2.34 (оба с, по 3 H, Me) 7.50—7.80 (м, 5 H, Ph)

Рис. 1. Строение новой мезоионной системы 9а по данным РСА.

Для анализа структурных особенностей сопоставим строение молекулы 9а с геометрией ее ионного прототипа — соли 8а (данные РСА см. лит.¹⁰). Переход от катиона к мезоионной системе мало влияет на структуру пиридинового фрагмента и длину связи C(9)—S(1); указанный фрагмент обеих молекул напоминает структуру пиридин-2-тиона (со слабо выраженным квазидиеновым мотивом). При переходе от молекулы 8а к 9а длины связей S(1)-C(2) и N(4)—C(3) увеличиваются примерно на 0.02 Å каждая. Отметим, что именно эта пара связей разделяет фрагмент пиридинтиона, на котором должен делокализоваться положительный заряд, и оставшуюся часть молекулы, на которой должен делокализоваться отрицательный заряд. При этом и эндоциклическая связь C(2)-C(3), и экзоциклическая связь C(3)-C(10) почти не изменяются, а длина экзо-связи С(2)-N(2) (между имидатным фрагментом и тиазольным циклом) увеличивается до 1.35 Å. Таким образом, суть структурных изменений можно приблизительно описать как тенденцию молекулы 9а разделиться на два противоположно заряженных фрагмента со слабо выраженной делокализацией связей в каждом из них. Отметим, что для родственной системы тиазоло[3,2-а]пиридиний-2-тиолата (см. предыдущее сообщение)¹ закономерность была иной.

Для оценки возможной биологической активности отдельные представители неизвестных подклассов гетероциклов 8 и 9 были подвергнуты соответствующим испытаниям. Однако выборочные тесты для мезоионного соединения 9b не выявили признаков противораковой (*in vitro*, культура *Hela*) и инсектицидной (*in vivo*, дрозофиллы) активностей. Для тиазолопиридиниевых солей класса 8 особый интерес могли представлять агрохимические тесты (известно, что структурные фрагменты как пиридина, так и тиазола широко представлены среди современных пестицидов и инсектицидов). Между тем форма перхлоратов, в виде которых были выделены соли **8**, являлась неприемлемой для биологических тестов. Это побудило нас к более детальному исследованию циклизации $7 \rightarrow 8$ с точки зрения анионного состава образующихся солей **8**.

Анионный состав первоначально образующихся солей 8

Исследуемая реакция $7 \rightarrow 8$ не является вполне привычной гетероциклизацией, поскольку она сопровождается еще и процессом «неорганического» ионного обмена по типу «Соль 1 + Соль 2 = Соль 3 + Соль 4». При эквимольном соотношении реагентов превращение описывается следующей стехиометрией:

 $[R-CI]^+ + Br^- + K^+ + SCN^- = [RSCN]^+ + CI^+ + Br^- + K^+,$

где R – органический фрагмент исходной и конечной солей 7, 8.

Ясно, что анионом для образующегося катиона **8** может в равной мере служить как ион Br⁻, так и ион Cl⁻ (ион Br⁻ — противоион соли **7**, а ион Cl⁻ появляется за счет вытеснения изначально ковалентного атома хлора в соли хлорпиридиния). Предугадать качественный ионный состав солей **8** затруднительно, а решить эту аналитическую задачу с помощью стандартного элементного анализа не удается. Окончательный ответ об анионном составе солей **8** получен нами с использованием метода анионной хроматографии (с использованием KCl, KBr и KSCN для калибровки хроматограммы). Результаты выборочных экспериментов приведены в таблице 3.

Как видно, при эквимольном соотношении реагентов доминирующим противоионом для случаев 8d и 8g оказывается анион Br⁻, причем в обоих случаях соли содержат до 20% хлорида. При этом тиоцианатион может также присутствовать в продукте (случаи 8g, 8b). Показательно, что для соединения 8b даже при эквимольном соотношении реагентов образуется преимущественно роданид продукта, т.е. KSCN расходуется и как ковалентная, и как ионная компонента, за счет чего выход в реакции падает до 57%. Таким образом, факторы растворимости конечного продукта и устойчивость кристаллических решеток оказы-

Таблица 3. Анионный состав первоначально образующихся солей 8 по данным ионной хроматографии

Катион	7 : KSCN*	Противоион в солях 8			
		Cl-	Br	SCN-	
8d	1:1	0.89	4.30	0	
	1:2	0.13	0.05	1.44	
8g	1:1	0.44	2.03	0.89	
8b	1:1	0.13	0.09	4.12	
	1:2	0.08	0.48	2.00	

* Мольное соотношение реагентов.

Рис. 2. Строение роданида 8d по данным РСА.

вают решающее влияние на состав получаемых органических солей.

При двукратном избытке KSCN доля тиоцианатиона в составе соли резко возрастает, а при трехкратном избытке получаемые соли **8** оказываются тиоцианатами. Это было однозначно подтверждено данными PCA (рис. 2) для монокристалла **8d**, выделенного из реакционной смеси (ср. данные PCA тиоцианата **8a**,¹⁰ полученного аналогично). Структурные тенденции в катионе **8d** аналогичны обсуждавшимся ранее¹⁰ для катиона **8a**.

Таким образом, изменение условий позволяет получать соединения 8 либо в виде смешанных солей, либо в форме тиоцианатов. К сожалению, роданиды органических соединений часто малоприемлемы для биологических испытаний. Эффективным способом получения других водорастворимых солей на основе солей 8 оказалась конверсия смешанных солей в гигроскопичные гидросульфаты действием конц. H_2SO_4 (от противоионов удается избавиться за счет летучести вытесняемых кислот). Наконец, необычным решением для получения заведомого конечного продукта в виде хлорида явилось использование исходной соли 7 в виде перхлората. В этом случае бромид-ион в системе практически отсутствует, а в реакции перхлората хлорпиридиниевой соли с KSCN образуется малорастворимый в воде KClO₄ и растворимый органический хлорид 8.

Биологические тесты. Гидросульфаты соединений **8** (а также тиоцианат **8a**) не проявили инсектицидной и фунгицидной активности в стандартных тестах *in vitro*. Роданид **8a** не проявляет признаков противораковой (*in vitro*, культура *Hela*) и инсектицидной (*in vivo*, дрозофиллы) активностей. Смешанный галогенид **8d** (Br/Cl = 4.30/0.89, см. табл. 3) оказался активен, подавляя рост культуры золотистого стафилококка в концентрации 500 мкг • мл⁻¹.

Ионные соединения **8**, полученные при эквимольном соотношении реагентов (см. табл. 3), обладают пестицидными свойствами: соединения **8b** и **8g** показали умеренную гербицидную активность (некроз), а соединения **8b**, **8d**, **8g** слабо подавляют всхожесть семян.

Экспериментальная часть

Спектры ЯМР ¹Н регистрировали на приборе «Bruker AC 400». Химические сдвиги измерены в δ-шкале. Ионную хроматографию проводили на хроматографе «Dionex DX-120», на хроматографической колонке AS4-A (элюент 1.7 *мМ* Na₂CO₃/1.8 *мМ* NaHCO₃); скорость потока 1 мл • мин⁻¹. Исходные соли пиридиния 7 были синтезированы по известным методикам^{12–14} и введены в дальнейшие превращения без дополнительной очистки.

Получение перхлоратов 8 (общая методика). Растворяли 5 ммолей соли 7 в смеси 15 мл этанола и 5 мл воды (если необходимо, раствор подогревали до 50 °C), затем добавляли раствор 1.46 г (15 ммолей) KSCN в 6 мл этанола и 4 мл воды. Смесь выдерживали 4-5 ч при ~20 °C, а затем отделяли осадок, промывали 80%-ным водным этанолом, сушили. К полученному вешеству прибавляли по каплям при эффективном перемешивании 0.5 мл конц. Н₂SO₄ (Осторожно! Выделение газа!). Выдерживали 1-2 ч при комнатной температуре, а затем добавляли 0.1 мл 71%-ной хлорной кислоты (1 ммоль). Смесь выдерживали 1 ч, затем разбавляли водой до объема 1-2 мл. При этом выпадал перхлорат 8, который отфильтровывали, промывали на фильтре небольшим количеством ледяной воды, отжимали и высушивали. Перхлораты 8 могут быть перекристаллизованы из этанола. Характеристики перхлоратов 8 приведены в табл. 1, данные спектров ЯМР ¹Н — в табл. 2.

Получение гидросульфатов 8 (общая методика). Растворы солей в серной кислоте получали, как в предыдущем опыте, выдерживали их 1-2 ч при комнатной температуре, а затем добавляли 100 мл абсолютного диэтилового эфира и тщательно перемешивали 30 мин. Затем эфир декантировали, а твердый остаток повторно обрабатывали эфиром (для удаления следов серной кислоты) до получения тонкой взвеси твердого вещества. Затем осадок отфильтровывали, сушили в вакууме над P_2O_5 . Спектры ЯМР ¹Н гидросульфатов отличались от спектров перхлоратов 8 лишь наличием дополнительного широкого сигнала аниона HSO_4^- . Полученные гидросульфаты весьма гигроскопичны.

Получение хлорида 2-амино-3-(n-фторбензоил)тиазоло[3,2-a]пиридиния (8b). Бромид 1-(n-фторфенацил)-2хлорпиридиния (7b) (0.27 г, 0.82 ммоля) растворили в 10—15 мл этанола, добавили 0.23 г (1.64 ммоля) NaClO₄, затем кипятили раствор 10 мин, охладили, отфильтровали кристаллы органического перхлората и перекристаллизовали их из этанола. Получили 0.24 г перхлората 7b. Затем 0.07 г (0.2 ммоля) перхлората 7b растворили в 4 мл этанола и смешали с раствором 0.02 г (0.2 ммоля) KSCN в 1.5 мл этанола. Смесь нагрели до 70 °C, затем дали охладиться до ~20 °C и отфильтровали осадок KClO₄. После упаривания фильтрата под пониженным давлением получили хлорид 8b с чистотой 94% (контроль противоиона методом анионной хроматографии). Спектр ЯМР ¹Н полученного образца идентичен спектру перхлората 8b.

N-Трифторацетил-3-(*n*-нитробензоил)тиазоло[3,2-*a*]пиридиний-2-имидат (9а). К 0.5 г перхлората 8а добавили 4 мл

ура Заболевание	Возбудитель	Тип теста
Парша	Venturia inaequalis	Добавление в вегетационный сосуд
Серая плесень	Botrytis cinerea	Обработка цветущего растения
Настоящая мучнистая роса	Erysiphe graminis	Добавление в вегетационный сосуд
Фитофтора	Phytophthora infestans	Добавление в вегетационный сосуд
Ложная мучнистая роса	Plasmopala viticola	Добавление в вегетационный сосуд
	ура Заболевание Парша Серая плесень Настоящая мучнистая роса Фитофтора Ложная мучнистая роса	ура Заболевание Возбудитель Парша Venturia inaequalis Серая плесень Botrytis cinerea Настоящая мучнистая роса Erysiphe graminis Фитофтора Phytophthora infestans Ложная мучнистая роса Plasmopala viticola

Таблица 4. Результаты биологических испытаний

трифторуксусного ангидрида (предварительно перегнанного над P_2O_5) и, перемешивая, охладили до 0 °С. После 1 ч выдерживания смеси при 0 °С к ней очень осторожно при интенсивном перемешивании добавили 0.5 мл пиридина (перегнан над КОН). Выпавший светло-желтый игольчатый осадок отфильтровали и высушили на фильтре. Полученные 0.8 г продукта, загрязненного трифторацетатом пиридиния, перекристаллизовали. Выход 0.346 г (70%), т. пл. 295—296 °С (из CH₃CN). Найдено (%): N, 10.55. С₁₆H₈F₃N₃O₄S. Вычислено (%): N, 10.63. Спектр ЯМР ¹H (ДМСО-d₆, δ , м.д., J/Γ п): 10.05 (д, 1 H, H(5), $J_{5,6} = 6.8$); 8.57 (д, 1 H, H(8), $J_{7,8} = 8.3$); 8.26—8.23 (м, 2 H, Ar); 8.12 (м, 1 H, H(7)); 7.90—7.88 (м, 3 H, Ar + H(6)). Данные РСА приведены на рисунке 1 и в таблицах 4—6.

N-Ацетил-3-(*n*-нитробензоил)тиазоло[3,2-*a*]пиридиний-2-имидат (9b). К 0.5 г перхлората 8а добавили 5 мл уксусного

Таблица 5. Кристаллографические данные и параметры рентгеноструктурных экспериментов для 8d и 9a

Параметр	8d	9a
Брутто-формула	$C_{15}H_{10}BrN_3OS_2$	C ₁₆ H ₈ F ₃ N ₃ O ₄ S
Молекулярная масса	392.29	395.31
Сингония	Моноклинная	Триклинная
Пространственная группа	$P2_1/c$	$P\overline{1}$
a/Å	8.844(2)	4.4428(8)
b/Å	15.821(2)	13.2223(19)
c/Å	11.557(6)	13.5601(19)
α/град	90	102.260(10)
β/град	107.86(3)	89.620(10)
ү/град	90	97.450(10)
$V/Å^3$	1539.3(9)	771.7(2)
Z	4	2
$d_{\rm rbuy}/\Gamma \cdot \rm cm^{-3}$	1.693	1.701
μ/MM^{-1}	2.945	2.499
Область сканирования,	2.25-27.97	3.34-74.92
ө/град		
Область индексов	$-11 \leq h \leq 11$	$-5 \le h \le 5$
	$0 \le k \le 20$	$-16 \le k \le 16$
	$0 \le l \le 15$	$0 \le l \le 16$
Количество измеренных отражений	3885	3116
Количество отражений	3700	2996
$c I > 2\sigma(I)$		
Число уточняемых параметров	208	244
GOOF	1.023	1.054
$R_1/wR_2 [I > 2\sigma(I)]$	0.0830/0.2068	0.0858/0.2219
R_1/wR_2 по всем	0.1394/0.2469	0.1047/0.2368
отражениям		·
Экстинкция	0.0073(9)	_
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}$, e • Å ⁻³	0.956/-1.002	0.352/-0.408

ангидрида (предварительно перегнанного над P_2O_5). Затем в смесь осторожно и при интенсивном перемешивании добавили 0.2 г пиридина (перегнан над КОН). Образовавшийся интенсивно желтый аморфный осадок отфильтровали, промыли 3 раза абсолютным ацетонитрилом и высушили на фильтре. Выход 0.29 г (68%). Вещество (50 мг) перекристаллизовали, т.пл. 305–306 °C (из CH₃CN). Найдено (%): N, 12.33. C₁₆H₁₁N₃O₄S. Вычислено (%): N, 12.31. Спектр ЯМР ¹H (ДМСО-d₆, δ , м.д., J/Γ ц): 10.21 (д. 1 H, H(5), $J_{5,6} = 6.9$); 8.31–8.26 (м, 2 H, Ar); 8.05 (м, 1 H, H(7)); 7.90–7.80 (м, 2 H, Ar); 7.52 (д. 1 H, H(8), $J_{7,8} = 8.4$); 7.42 (д.д.д. 1 H, H(6), $J_{5,6} = 6.9$, $J_{6,7} = 7.4$, $J_{6,8} = 0.9$); 1.72 (с. 3 H, Ac).

Биологические испытания проводили по стандартным методикам на следующих культурах: *имаго D. virilis*, линия 101 (токсичность веществ для дрозофилы); культура *Hela* (противораковая активность); золотистый стафилококк, штамм 209_P (бактериостатическое действие).

Пестицидную активность изучали в лабораториях исследовательского центра компании Nippon Soda (Япония). Для исследования фунгицидных свойств (*in vivo*) были использованы растения и патогены, перечисленные в таблице 4.

В фунгицидных тестах (in vitro) исследовали следующие культуры: Pseudomonas syringae, Pythium aphanidermatum, Rhisoctonia solani, Botritis cinerea (как устойчивый, так и чувствительный к бензимидазолу), Penicillium italicum, Cercospora beticola, Diaporthe citri, Alternaria alternate (яблочный патотип), Gibberella fujikuroi, Phytophthora infestans.

Для инсектицидных тестов использовались тля хлопковая (*Aphis gossypii*), походные черви (armyworms *Pseudaletia unipuncta*), пятнистый паутинный клещик (*Tetrarhynchus*). Для контроля применяли циперметрин, дикофол.

Таблица 6. Избранные межатомные расстояния (*d*) в структуре 8d

Связь	d∕Å	Связь	d∕Å
Br(14)—C(14)	1.8993(9)	C(10)-O(10)	1.2083(6)
S(1)-C(9)	1.7270(6)	C(10) - C(11)	1.5558(5)
S(1) - C(2)	1.7548(6)	C(11)-C(16)	1.3935(7)
C(2) - N(2)	1.3417(7)	C(11)–C(12)	1.4031(6)
C(2) - C(3)	1.3639(5)	C(12)-C(13)	1.3811(8)
C(3) - N(4)	1.4276(7)	C(13) - C(14)	1.3918(9)
C(3)-C(10)	1.4454(6)	C(14)-C(15)	1.3687(8)
N(4) - C(5)	1.3277(8)	C(15)-C(16)	1.3740(9)
N(4) - C(9)	1.3424(8)	N(2)-H(2A)	0.83(3)
C(5) - C(6)	1.3587(10)	N(2) - H(2B)	0.90(3)
C(6) - C(7)	1.3804(8)	S-C	1.622(4)
C(7) - C(8)	1.3669(8)	N-C	1.141(5)
C(8)-C(9)	1.3913(9)		

Угол	ω/град	Угол	ω/град
C(9) - S(1) - C(2)	89.65(3)	O(10)-C(10)-C(3)	123.84(8)
N(2) - C(2) - C(3)	128.07(2)	O(10) - C(10) - C(11)	118.56(8)
N(2) - C(2) - S(1)	118.83(2)	C(3) - C(10) - C(11)	116.03(3)
C(3) - C(2) - S(1)	113.09(3)	C(16) - C(11) - C(12)	119.30(3)
C(2) - C(3) - N(4)	110.32(2)	C(16) - C(11) - C(10)	125.39(2)
C(2) - C(3) - C(10)	119.83(3)	C(12) - C(11) - C(10)	115.31(3)
N(4) - C(3) - C(10)	129.850(18)	C(13) - C(12) - C(11)	120.66(4)
C(5) - N(4) - C(9)	119.27(6)	C(12) - C(13) - C(14)	118.11(4)
C(5) - N(4) - C(3)	126.42(4)	C(15) - C(14) - C(13)	122.05(5)
C(9) - N(4) - C(3)	114.31(4)	C(15)-C(14)-Br(14)	118.40(5)
N(4) - C(5) - C(6)	122.23(4)	C(13) - C(14) - Br(14)	119.54(4)
C(5) - C(6) - C(7)	119.55(5)	C(14) - C(15) - C(16)	119.77(6)
C(8) - C(7) - C(6)	118.82(7)	C(15) - C(16) - C(11)	120.10(4)
C(7) - C(8) - C(9)	119.08(4)	C(2)-N(2)-H(2A)	118.8(19)
N(4) - C(9) - C(8)	121.06(5)	C(2) - N(2) - H(2B)	122.0(2)
N(4) - C(9) - S(1)	112.62(5)	H(2A)-N(2)-H(2B)	119.0(3)
C(8) - C(9) - S(1)	126.32(3)	N-C-S	178.5(3)

Таблица 7. Избранные валентные углы (ω) в структуре 8d

Таблица 8. Избранные межатомные расстояния (*d*) в структуре **9**а

Связь	$d/{ m \AA}$	Связь	d∕Å
S(1)-C(9)	1.716(4)	C(11)-C(16)	1.381(6)
S(1) - C(2)	1.754(3)	C(11) - C(12)	1.386(6)
C(2) - N(2)	1.353(5)	C(12)-C(13)	1.387(6)
C(2) - C(3)	1.383(5)	C(13) - C(14)	1.370(7)
N(2) - C(17)	1.325(5)	C(14) - C(15)	1.376(7)
N(4) - C(9)	1.360(5)	C(14) - N(3)	1.477(5)
N(4) - C(5)	1.375(5)	C(15) - C(16)	1.377(6)
N(4) - C(3)	1.435(4)	C(17) - O(17)	1.236(5)
C(5) - C(6)	1.367(6)	C(17) - C(18)	1.535(5)
C(3) - C(10)	1.438(5)	C(18) - F(2)	1.308(5)
C(6) - C(7)	1.387(6)	C(18) - F(1)	1.309(5)
C(7) - C(8)	1.377(6)	C(18) - F(3)	1.318(6)
C(8) - C(9)	1.393(5)	N(3) - O(31)	1.207(7)
C(10)-O(10)	1.249(5)	N(3) - O(32)	1.217(7)
C(10) - C(11)	1.495(5)	., .,	

Гербицидную активность изучали на культурах Digitaria adscendence, Setaria faberi, Abutilon theophrasti, Amarantus

Таблица 9. Избранные валентные углы (ω) в структуре 9а

retroflexus ((послевсх	одные тесты),	а также Е	thinochloa	utilis,
Cyperus iria	, Lactuca	sativa (всхожест	ъ семян);	в качестве	кон-
грольных	веществ	использовали	алахлор,	атразин,	гли-
фосфат.					

Рентгеноструктурный анализ. Экспериментальные интенсивности дифракционных отражений для монокристаллов 8d и 9a получены при комнатной температуре на дифрактометре CAD-4¹⁵ (λ (Mo-K α) = 0.7107 Å для 8d и (λ (Cu-K α) = 1.5418 Å для 9a, графитовый монохроматор, ω-сканирование). Кристаллографические данные и параметры экспериментов РСА даны в таблице 5. Параметры элементарных ячеек определяли и уточняли по 25 рефлексам в интервале углов ю 14.5—15.5° и 30—35° для соединений 8d и 9a соответственно. Поскольку кристаллы исследованных соединений имеют низкие линейные коэффициенты поглощения и малые размеры, поправку на поглощение не вводили. Первичную обработку массивов экспериментальных данных проводили по комплексу программ WinGX¹⁶. Все последующие расчеты выполняли в рамках комплекса программ SHELX9717. Кристаллические структуры определены прямыми методами с последующим уточнением полноматричным МНК позиционных и тепловых параметров в анизотропном приближении для всех неводородных атомов. Атомы водорода помещали в геометрически рассчи-

Угол	ω/град	Угол	ω/град	Угол	ω/град	
C(9) - S(1) - C(2)	90.48(17)	N(4) - C(9) - C(8)	121.2(3)	C(14) - C(15) - C(16)	118.2(4)	
N(2) - C(2) - C(3)	124.3(3)	N(4) - C(9) - S(1)	113.1(3)	C(15) - C(16) - C(11)	120.6(4)	
N(2) - C(2) - S(1)	122.9(3)	C(8) - C(9) - S(1)	125.7(3)	O(17) - C(17) - N(2)	128.5(4)	
C(3) - C(2) - S(1)	112.3(3)	O(10) - C(10) - C(3)	121.9(4)	O(17) - C(17) - C(18)	116.1(4)	
C(17) - N(2) - C(2)	117.1(3)	O(10) - C(10) - C(11)	114.4(3)	N(2) - C(17) - C(18)	115.4(3)	
C(9) - N(4) - C(5)	120.0(3)	C(3) - C(10) - C(11)	123.7(3)	F(2) - C(18) - F(1)	106.8(4)	
C(9) - N(4) - C(3)	113.2(3)	C(16) - C(11) - C(12)	119.8(4)	F(2)-C(18)-F(3)	107.5(4)	
C(5) - N(4) - C(3)	126.6(3)	C(16) - C(11) - C(10)	122.1(4)	F(1)-C(18)-F(3)	107.2(4)	
C(6) - C(5) - N(4)	119.5(4)	C(12) - C(11) - C(10)	118.1(4)	F(2) - C(18) - C(17)	110.6(4)	
C(2) - C(3) - N(4)	110.9(3)	C(11) - C(12) - C(13)	120.3(4)	F(1) - C(18) - C(17)	111.2(3)	
C(2) - C(3) - C(10)	127.4(3)	C(14) - C(13) - C(12)	118.0(4)	F(3) - C(18) - C(17)	113.4(4)	
N(4) - C(3) - C(10)	120.1(3)	C(13) - C(14) - C(15)	123.0(4)	O(31) - N(3) - O(32)	122.8(5)	
C(5) - C(6) - C(7)	121.2(4)	C(13) - C(14) - N(3)	118.4(4)	O(31) - N(3) - C(14)	119.0(5)	
C(8) - C(7) - C(6)	119.3(4)	C(15) - C(14) - N(3)	118.6(4)	O(32) - N(3) - C(14)	118.3(5)	
C(7) - C(8) - C(9)	118.8(4)					

танные положения и уточняли в модели «наездника». Избранные межатомные расстояния, валентные углы для соединений **8d** и **9a** приведены в таблицах 6—9. Кристаллографическая информация по исследованным структурам депонирована в Кембриджском банке структурных данных. Пространственное расположение атомов в молекулах **8d** и **9a** и их нумерация показаны на рисунках 1 и 2 соответственно, полученных с использованием программы ORTEP-3¹⁸.

В кристалле соединения **8d** отмечено существование одной внутримолекулярной водородной связи N(2)—H(2A)...O(10): N(2)—H(2A) 0.83(3) Å, H(2A)...O(10) 2.16(3) Å, N(2)...O(10) 2.734(2) Å и угол N(2)—H(2A)...O(10) 127(2)° и двух межмолекулярных водородных связей N(2)—H(2A)...S^{*i*}: N(2)—H(2A) 0.83(3) Å, H(2A)...S^{*i*} 2.89(3) Å, N(2)...S^{*i*} 3.5189(11) Å и угол N(2)—H(2A)...S^{*i*} 135(2)° (*i* — симметрическая операция [*x*, 1/2 – *y*, *z* – 1/2]); N(2)—H(2B)...S^{*ii*} 3.2856(17) Å и угол N(2)—H(2B)...S^{*ii*} 155(3)° (*ii* — симметрическая операция [–*x*, *y* + 1/2, 1/2 – *z*]).

Авторы выражают признательность за проведение биологических испытаний сотрудникам компании Nippon Soda (Одавара, Япония), а также В. В. Сереброву (Лаборатория патологии насекомых, Институт систематики и экологии животных Сибирского отделения РАН, Новосибирск; анализ токсичности для дрозофиллы), Л. М. Винокурову (филиал ИБХ, Пущино; противораковая активность) и В. П. Бегишеву (Естественнонаучный институт при Пермском госуниверситете; противомикробное действие). Мы также признательны кафедре аналитической химии МГУ и А. И. Элефтерову за проведение анализа ионного состава солей **8** методом ионной хроматографии.

Работа выполнена при финансовой поддержке Российского фонда фундаментальных исследований (оплата лицензии на пользование Кембриджским банком структурных данных, проект № 02-07-90322).

Список литературы

- Е. В. Бабаев, В. Б. Рыбаков, И. А. Орлова, А. А. Буш, К. В. Маерле, А. Ф. Насонов, Изв. АН. Сер. хим., 2004, 170 [Russ. Chem. Bull., Int. Ed., 2004, 53, 176].
- M. Ohta, K. Yoshida, and S. Sato, Bull. Chem. Soc. Jpn, 1966, 39, 1269.
- C. G. Newton, W. D. Ollis, and D. E. Wright, J. Chem. Soc., Perkin Trans., 1984, 1, 69.
- 4. R. Huisgen, R. Grashey, and R. Steingruber, *Tetrahedron Lett.*, 1963, **22**, 1441.
- 5. P. B. Talukar, S. K. Sengupta, and A. K. Datta, *Chem. Commun.*, 1972, **11**, 696.
- E. Fischer, G. Rembarz, and K. M. Wollin, J. Prakt. Chem., 1980, 322, 375.
- M. Minguez, T. Gandasegui, J. J. Vaquero, J. Alvarez-Builla, and J. L. Garcia-Navio, J. Org. Chem., 1993, 58, 6030.
- A. M. Cuadro, J. L. Novella, A. Molina, J. Alvarez-Builla, and J. J. Vaquero, *Tetrahedron*, 1990, 46, 6033.
- J. Agejas, A. M. Cuadro, M. Pastor, J. J. Vaquero, J. L. Garcia-Navio, and J. Alvarez-Builla, *Tetrahedron*, 1995, 51, 12425.
- E. V. Babaev, A. A. Bush, I. A. Orlova, V. B. Rybakov, and S. G. Zhukov, *Tetrahedron Lett.*, 1999, **40**, 7553.
- 11. A. Kakehi, S. Ito, and Y. Hashimoto, *Bull. Chem. Soc. Jpn*, 1996, **69**, 1769.
- 12. H. Pauls and F. Kroehnke, Chem. Ber., 1976, 109, 3646.
- B. Blank, N. W. Ditullio, A. J. Krog, and H. L. Saunders, J. Med. Chem., 1978, 21, 489.
- 14. Д. А. Майборода, Е. В. Бабаев, Л. В. Гончаренко, Хим. фарм. журн., 1998, **32**, № 6, 24 [*Pharm. Chem. J.*, 1998, **32**, No. 6, 310 (Engl. Transl.)].
- Enraf Nonius CAD 4 Software. Version 5.0, Enraf Nonius, Delft (Netherlands), 1994.
- 16. L. J. Farrugia, *WinGX. X Ray Crystallographic Programs for Windows*, University of Glasgow, Glasgow (UK), 2003.
- G. M. Sheldrick, SHELX97. Program for the Solution and Refinement of Crystal Structures, University of Göttingen, Göttingen (Germany), 1997.
- L. J. Farrugia, ORTEP 3 for Windows, University of Glasgow, Glasgow (UK), 2003.

Поступила в редакцию 25 ноября 2004; после доработки — 21 января 2005