Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B.
Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
albov@struct.chem.msu.ru

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.102$
Data-to-parameter ratio $=15.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

2-(4-Chlorophenyl)-5-methyl-7,8-dihydro-6H-cyclo-penta[e][1,3]oxazolo[3,2-a]pyridin-9-ium perchlorate

The title compound, $\mathrm{C}_{17} \mathrm{H}_{15} \mathrm{ClNO}^{+} \cdot \mathrm{ClO}_{4}^{-}$, has been synthesized and characterized by ${ }^{1} \mathrm{H}$ NMR and X-ray diffraction techniques. The bicyclic system is aromatic, with positively charged nitrogen, and is conjugated with the benzene ring.

Comment

In the course of systematic investigations of the effect of the size of cycloalkane fragments on the reactivity of pyridinebased heterocycles, we have previously described the crystal structure of 4-methyl-1,5,6,7-tetrahydro-2H-cyclopenta[b]-pyridin-2-one, (1) (Albov, Mazina et al., 2004). Following a study with cycloheptene derivatives (Albov, Rybakov et al., $2004 a, b, c$), we synthesized the title compound, (4).

(1)

(2)

An analysis of bond lengths in the oxazolopyridinium ring of (4) (Fig. 1 and Table 1) reveals that this bicyclic system is certainly aromatic, with the positive charge located on atom N1. The nine-membered bicyclic system is planar to within 0.0127 (11) A., with atoms C10, C12, C13 and C14 lying in the same plane. Atom C 11 is displaced from this plane by 0.187 (2) A. The dihedral angle between the oxazolopyridinium and benzene fragments is $4.82(6)^{\circ}$, indicating that there is considerable conjugation between these aromatic fragments.

All these results will be compared with crystal structures of other six-, seven- and eight-membered cycloalkane derivatives which are in progress.

Experimental

The title compound was prepared according to the method of Albov, Mazina et al. (2004) (m.p. 571 K , with explosion). ${ }^{1} \mathrm{H}$ NMR (DMSO-

ORTEP-3 (Farrugia, 1997) plot of the molecule and atom-numbering scheme of compound (4). Displacement ellipsoids are drawn at the 50% probability level.
$d_{6}, 400 \mathrm{MHz}$, p.p.m.): $2.33\left(m, 2 \mathrm{H}, 11-\mathrm{CH}_{2}\right), 2.62\left(s, 3 \mathrm{H}, 13-\mathrm{CH}_{3}\right), 3.17$ $\left(t, 2 \mathrm{H}, 10-\mathrm{CH}_{2}\right), 3.45\left(t, 2 \mathrm{H}, 12-\mathrm{CH}_{2}\right), 7.64,8.01(d d, 4 \mathrm{H}, \mathrm{Ar}), 8.04(s$, $1 \mathrm{H}, 6-\mathrm{CH}), 9.33(s, 1 \mathrm{H}, 2-\mathrm{CH})$ (using the crystallographic numbering scheme of Fig. 1).

Crystal data

```
C17 H}\mp@subsup{\textrm{H}}{5}{}\mp@subsup{\textrm{ClNO}}{}{+}.\mp@subsup{\textrm{ClO}}{4}{+
Mr}=384.2
Monoclinic, P2 / /c
a=12.631 (5) А
b=8.329 (5) \AA
c=17.982(8) \AA
\beta=119.11 (3)}\mp@subsup{}{}{\circ
V=1652.8(14) \AA `
Z=4
```

Data collection

Enraf-Nonius CAD-4	$\theta_{\max }=74.8^{\circ}$
\quad diffractometer	$h=-15 \rightarrow 13$
Non-profiled ω scans	$k=0 \rightarrow 10$
Absorption correction: none	$l=0 \rightarrow 22$
3411 measured reflections	1 standard reflection
3411 independent reflections	frequency: 30 min
2899 reflections with $I>2 \sigma(I)$	intensity decay: 2%

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.102$
$S=0.79$
3411 reflections
227 parameters
$D_{x}=1.544 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
reflections
$\theta=25-26^{\circ}$
$\mu=3.80 \mathrm{~mm}^{-1}$
$T=293$ (2) K
Prism, colourless
$0.22 \times 0.21 \times 0.20 \mathrm{~mm}$

$$
\begin{aligned}
& \theta_{\max }=74.8^{\circ} \\
& h=-15 \rightarrow 13 \\
& k=0 \rightarrow 10 \\
& l=0 \rightarrow 22 \\
& 1 \text { standard reflection } \\
& \quad \text { frequency: } 30 \text { min } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

> H-atom parameters constrained
> $w=1 /\left[\sigma^{2}\left(F_{o}^{2}\right)+(0.1086 P)^{2}\right]$
> where $P=\left(F_{o}^{2}+2 F_{c}^{2}\right) / 3$
> $(\Delta / \sigma)_{\max }=0.001$
> $\Delta \rho_{\max }=0.24 \mathrm{e} \AA^{-3}$
> $\Delta \rho_{\min }=-0.29 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

$\mathrm{Cl} 1-\mathrm{C} 17$	$1.7572(13)$	$\mathrm{C} 7-\mathrm{C} 13$	$1.499(2)$
O4-C5	$1.3432(16)$	$\mathrm{C} 8-\mathrm{C} 9$	$1.3461(19)$
O4-C3	$1.3959(16)$	$\mathrm{C} 8-\mathrm{C} 10$	$1.491(2)$
N1-C5	$1.3225(18)$	$\mathrm{C} 9-\mathrm{C} 12$	$1.430(2)$
N1-C2	$1.4136(16)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.538(3)$
N1-C9	$1.4153(16)$	$\mathrm{C} 11-\mathrm{C} 12$	$1.551(2)$
C2-C3	$1.3364(17)$	C12-O23	$1.3231(19)$
C3-C14	$1.4608(17)$	C12-O24	$1.3574(19)$
C5-C6	$1.3986(19)$	C12-O22	$1.3647(17)$
C6-C7	$1.347(2)$	C12-O21	$1.4066(16)$
C7-C8	$1.422(2)$		
C5-O4-C3	$106.04(10)$	C6-C7-C8	$119.50(12)$
C5-N1-C2	$109.70(10)$	C6-C7-C13	$120.19(14)$
C5-N1-C9	$118.66(11)$	C8-C7-C13	$120.32(13)$
C2-N1-C9	$131.62(11)$	C9-C8-C7	$122.56(13)$
C3-C2-N1	$104.22(11)$	C9-C8-C10	$108.31(13)$
C2-C3-O4	$110.59(11)$	C7-C8-C10	$128.96(13)$
C2-C3-C14	$132.91(11)$	C8-C9-N1	$117.50(13)$
O4-C3-C14	$116.50(10)$	C8-C9-C12	$117.82(13)$
N1-C5-O4	$109.40(11)$	N1-C9-C12	$124.50(12)$
N1-C5-C6	$125.25(13)$	C8-C10-C11	$103.39(13)$
O4-C5-C6	$125.30(13)$	C10-C11-C12	$107.23(13)$
C7-C6-C5	$116.49(14)$	C9-C12-C11	$100.52(13)$

All H atoms were placed in calculated positions and refined as riding atoms, with $\mathrm{C}-\mathrm{H}$ bond lengths in the range $0.93-0.97 \AA$. For methyl H atoms, $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}(\mathrm{C})$, and for other H atoms to $1.2 U_{\mathrm{eq}}(\mathrm{C})$.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX publication routines (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Albov, D. V., Mazina, O. S., Rybakov, V. B., Babaev, E. V., Chernyshev, V. V. \& Aslanov, L. A. (2004). Crystallogr. Rep. 49, 158-168.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004a). Acta Cryst. E60, o892-o893.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004b). Acta Cryst. E60, o894-o895.
Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004c). Acta Cryst. E60, o1096-o1097.
Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

