Acta Crystallographica Section E

# Structure Reports Online

ISSN 1600-5368

### Dmitry V. Albov,\* Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail: albov@struct.chem.msu.ru

#### **Key indicators**

Single-crystal X-ray study T = 293 KMean  $\sigma(\text{C-C}) = 0.003 \text{ Å}$  R factor = 0.049 wR factor = 0.129Data-to-parameter ratio = 14.2

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

## 4-Methyl-1-(3-nitrophenacyl)-5,6,7,8-tetrahydroquinolin-2(1*H*)-one

In the pyridone ring of the title compound,  $C_{18}H_{18}N_2O_4$ , single and double bonds alternate, showing some degree of conjugation.

Received 24 September 2004 Accepted 29 September 2004 Online 9 October 2004

#### Comment

In the course of our systematic study of the effect of the size of cycloalkane fragments on the reactivity of pyridine-based heterocycles, we have previously described the crystal structure of 2-methoxy-4-methyl-5,6,7,8-tetrahydroquinoline, (1) (Albov *et al.*, 2004*a*). We report here the crystal structure of 4-methyl-1-(3-nitrophenacyl)-5,6,7,8-tetrahydroquinolin-2(1*H*)-one, (2) (Fig. 1).

$$\begin{array}{c} CH_3 \\ N \\ OCH_3 \\ \end{array}$$

$$\begin{array}{c} 3\text{-NO}_2\text{PhCOCH}_2\text{Br} \\ CH_3\text{CN} \\ \end{array}$$

$$\begin{array}{c} CH_3 \\ O \\ N \\ O \\ \end{array}$$

$$\begin{array}{c} O \\ N \\ O \\ \end{array}$$

In the planar pyridone ring N1—C10 of (2), the single and double bonds alternate, showing some degree of delocalization. Atoms C6, C7 and C8 are displaced from this plane by -0.144 (4), 0.258 (4) and 0.332 (5) Å, respectively. Atoms C12, C13, O13, N2 and O21 lie in the plane of the benzene ring; only atom O22 is displaced from the plane by 0.136 (3) Å, and the torsion angle O13—C13—C14—C15 is 0.0 (2)°. It is evident that the 3-nitrobenzoyl fragment is completely conjugated. The dihedral angle between the benzene and pyridone rings is 85.45 (6)°. These angles are almost the same as in the 4-chlorophenacyl relative, but do not agree with cycloheptene and cyclooctene derivatives (Albov *et al.*, 2004b,c).

#### **Experimental**

Compound (1) (4.00 g) and 3-nitrophenacyl bromide (4.10 g) were boiled in acetonitrile for 6 h. When thin-layer chromatography showed only traces of the source compounds in the solution, the solvent was evaporated and the product washed with acetone (yield 3.83 g, 52%). The product was recrystallized from acetone (m.p. 441–443 K). <sup>1</sup>H NMR (DMSO-*d*<sub>6</sub>, 400 MHz, p.p.m.): 1.73 (*m*, 4H, 7-CH<sub>2</sub> + 8-CH<sub>2</sub>), 2.12 (*s*, 3H, 11-CH<sub>3</sub>), 2.48 (*m*, 4H, 6-CH<sub>2</sub> + 9-CH<sub>2</sub>), 5.56 (*s*, 2H, 12-CH<sub>2</sub>), 6.13 (*s*, 1H, 3-CH), 7.84 (*t*, 1H, 16-CH), 8.49 (*m*, 2H, 15-CH + 17-CH), 8.80 (*s*, 1H, 19-CH).

© 2004 International Union of Crystallography Printed in Great Britain – all rights reserved

o1952

| Crystal | data |
|---------|------|
|---------|------|

| $C_{18}H_{18}N_2O_4$            | Z = 2                                     |
|---------------------------------|-------------------------------------------|
| $M_r = 326.34$                  | $D_x = 1.373 \text{ Mg m}^{-3}$           |
| Triclinic, $P\overline{1}$      | Mo $K\alpha$ radiation                    |
| a = 9.115 (3) Å                 | Cell parameters from 25                   |
| b = 9.271 (3)  Å                | reflections                               |
| c = 11.248 (3)  Å               | $\theta = 12\text{-}14^{\circ}$           |
| $\alpha = 92.00 \ (2)^{\circ}$  | $\mu = 0.10 \text{ mm}^{-1}$              |
| $\beta = 105.09 (2)^{\circ}$    | T = 293 (2)  K                            |
| $\gamma = 118.82 \ (2)^{\circ}$ | Prism, light yellow                       |
| $V = 789.5 (5) \text{ Å}^3$     | $0.25 \times 0.24 \times 0.22 \text{ mm}$ |

#### Data collection

| Enraf-Nonius CAD-4                     | $\theta_{\mathrm{max}} = 26.0^{\circ}$ |  |  |
|----------------------------------------|----------------------------------------|--|--|
| diffractometer                         | $h = -11 \rightarrow 10$               |  |  |
| Non-profiled $\omega$ scans            | $k = -11 \rightarrow 11$               |  |  |
| Absorption correction: none            | $l=0 \rightarrow 13$                   |  |  |
| 3103 measured reflections              | 1 standard reflection                  |  |  |
| 3103 independent reflections           | every 200 reflections                  |  |  |
| 1936 reflections with $I > 2\sigma(I)$ | intensity decay: 8%                    |  |  |
|                                        |                                        |  |  |

#### Refinement

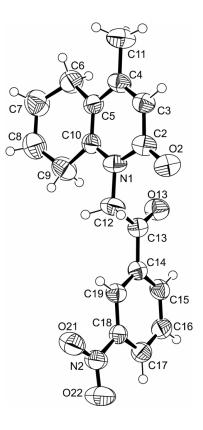

| Refinement on $F^2$             | H-atom parameters constrained                      |
|---------------------------------|----------------------------------------------------|
| $R[F^2 > 2\sigma(F^2)] = 0.050$ | $w = 1/[\sigma^2(F_o^2) + (0.0704P)^2]$            |
| $wR(F^2) = 0.129$               | where $P = (F_o^2 + 2F_c^2)/3$                     |
| S = 1.06                        | $(\Delta/\sigma)_{\text{max}} < 0.001$             |
| 3103 reflections                | $\Delta \rho_{\text{max}} = 0.13 \text{ e Å}^{-3}$ |
| 218 parameters                  | $\Delta \rho_{\min} = -0.15 \text{ e Å}^{-3}$      |

Table 1 Selected geometric parameters ( $\mathring{A}$ ,  $^{\circ}$ ).

| N1-C2      | 1.391 (3)   | C7-C8       | 1.526 (4)   |
|------------|-------------|-------------|-------------|
| N1-C10     | 1.399(2)    | C8-C9       | 1.493 (4)   |
| N1-C12     | 1.450(2)    | C9-C10      | 1.533 (3)   |
| C2-O2      | 1.225 (3)   | C12-C13     | 1.509 (3)   |
| C2-C3      | 1.414(2)    | C13-O13     | 1.210 (3)   |
| C3-C4      | 1.356 (3)   | C13-C14     | 1.475 (2)   |
| C4-C5      | 1.434(3)    | C18-N2      | 1.454 (3)   |
| C4-C11     | 1.495 (3)   | N2-O22      | 1.202 (2)   |
| C5-C10     | 1.351 (3)   | N2-O21      | 1.233 (2)   |
| C5-C6      | 1.517(3)    |             |             |
| C6-C7      | 1.531 (4)   |             |             |
| C2-N1-C10  | 123.62 (14) | C9-C8-C7    | 122.5 (2)   |
| C2-N1-C12  | 115.07 (15) | C8-C9-C10   | 112.8 (2)   |
| C10-N1-C12 | 121.23 (16) | C5-C10-N1   | 120.12 (17) |
| O2-C2-N1   | 121.02 (16) | C5-C10-C9   | 124.37 (18) |
| O2-C2-C3   | 125.00 (18) | N1-C10-C9   | 115.50 (16) |
| N1-C2-C3   | 113.90 (16) | N1-C12-C13  | 114.26 (15) |
| C4-C3-C2   | 123.90 (18) | O13-C13-C14 | 121.47 (15) |
| C3-C4-C5   | 119.34 (17) | O13-C13-C12 | 120.32 (16) |
| C3-C4-C11  | 120.02 (19) | C14-C13-C12 | 118.21 (14) |
| C5-C4-C11  | 120.63 (19) | C17-C18-N2  | 118.21 (15) |
| C10-C5-C4  | 118.61 (17) | C19-C18-N2  | 119.15 (15) |
| C10-C5-C6  | 123.68 (19) | O22-N2-O21  | 121.65 (18) |
| C4-C5-C6   | 117.71 (17) | O22-N2-C18  | 120.14 (18) |
| C5-C6-C7   | 113.9 (2)   | O21-N2-C18  | 118.20 (14) |
| C8-C7-C6   | 118.4 (2)   |             |             |

All H atoms were positioned geometrically and refined as riding (C—H = 0.93–0.97 Å), with  $U_{\rm iso}({\rm H})$  = 1.2 or 1.5 $U_{\rm eq}({\rm C})$ . The methyl group was allowed to rotate but not to tip.

Data collection: *CAD-4 EXPRESS* (Enraf-Nonius, 1994); cell refinement: *CAD-4 EXPRESS*; data reduction: *XCAD*4 (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS97* 



**Figure 1** *ORTEP*-3 view (Farrugia, 1997) of (2) with the atom-numbering scheme. Atomic displacement ellipsoids are drawn at the 50% probability level.

(Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP*-3 for Windows (Farrugia, 1997); software used to prepare material for publication: *WinGX* (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (Allen, 2002).

#### References

Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004a). Crystallogr. Rep. 49, 430–436.

Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004b). Acta Cryst. E60, 0894–0895.

Albov, D. V., Rybakov, V. B., Babaev, E. V. & Aslanov, L. A. (2004c). Acta Cryst. E60, o1219-o1221.

Allen, F. H. (2002). Acta Cryst. B58, 380-388.

Enraf-Nonius (1994). *CAD-4 EXPRESS*. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.