СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 13. СТРОЕНИЕ ЗАМЕЩЕННЫХ ПРОИЗВОДНЫХ ТЕТРАГИДРОХИНОЛИНА

© 2004 г. Д. В. Альбов*, В. Б. Рыбаков, Е. В. Бабаев, Л.А. Асланов

Московский государственный университет им. М.В. Ломоносова * E-mail: albov@biocryst.phys.msu.su Поступила в редакцию 03.07.2003 г.

Методом монокристальной дифракции исследованы структуры 4-метил–2-хлор–5,6,7,8-тетрагидрохинолина (a = 8.138(2), b = 11.127(4), c = 11.234(2) Å, $\beta = 111.30(2)^{\circ}$, Z = 4, пр. гр. $P2_1/c$), 4-метил–2метокси–5.6,7.8-тетрагидрохинолина (a = 5.7651(16), b = 8.530(2), c = 10.455(3) Å, $\alpha = 73.76(2)^{\circ}$,

 β = 86.95(2)°, γ = 83.79(2)° Z = 2, пр. гр. P1), 4-метил-2-(4-хлорфенацил)–5,6,7,8-тетрагидро-–1H-хинолин-2-она (a = 8.873(2), b = 17.137(2), c = 24.515(4) Å, Z = 8, пр. гр. $Pbn2_1$) и перхлората 2-(4-хлорфенил)-5-метил-6,7,8,9-тетрагидрооксазоло-[3,2-а]хинолин-10-илия (a = 8.110(6), b = 17.818(7), c = 17.721(5) Å, β = 100.46(4)°, Z = 4, пр. гр. $P2_1/c$). Структуры решены прямыми методами и уточнены полноматричным МНК в анизотропном приближении соответственно до R 0.0581, 0.0667, 0.0830, 0.0607.

ВВЕДЕНИЕ

Данная работа является продолжением проводимых структурных исследований гетероциклических соединений, обладающих способностью вступать в различные перегруппировки, в том числе и реакции циклизации [1–13]. Как и в предыдущих сообщениях, мы последовательно изучаем методом рентгеноструктурного анализа (**PCA**) строение всех интермедиатов и конечных продуктов многоступенчатых реакций циклизаций и перегруппировок. Структурными предшественниками многих систем, изученных нами ранее, являются производные пиридона-2.

В настоящей работе мы изучили цепочку превращений 4-метил–5,6,7,8-тетрагидро–1Н-хинолин–2-она (I) в перхлорат 2-(4-хлорфенил)–5-метил–6,7,8,9-тетрагидрооксазоло[3,2-а]хинолин– 10-иния (V) (схема 1).

Данные о строении молекул II–V в кристаллах обсуждаемых в настоящей статье соединений в

Схема 1.

476

Эмпирическая формула	C _{I0} H _{I2} NCl (II)	C ₁₁ H ₁₅ NO (III)	$C_{20}H_{21}N_2O_2Cl(IV)$	$C_{18}HNOVCl_2(V)$
Молекулярный вес	181.66	177.24	356.84	398.23
Сингония	Моноклинная	Триклинная	Ромбическая	Моноклинная
Пространственная группа	$P2_1/c$	$P\bar{1}$	Pbn2 ₁	$P2_1/c$
<i>a</i> , Å	8.138(2)	5.7651(16)	8.873(2)	8.110(6)
b, Å	11.127(4)	8.530(2)	17.137(2)	17.818(7)
<i>c</i> , Å	11.234(2)	10.455(3)	24.515(4)	17.721(5)
α, град	90	73.76(2)	90	90
β, град	111.30(2)	86.95(2)	90	100.46(4)
ү, град	90	83.79(2)	90	90
<i>V</i> , Å ³	947.8(4)	490.6(2)	3727.7(13)	1807.7(17)
Ζ	4	2	8	4
ρ _{выч} , г/см ³	1.273	1.200	1.272	1.463
$\mu(K_{\alpha}), \mathrm{cm}^{-1}$	3.46	0.77	19.33	34.97
Область углов θ, град	2.67-25.97	2.03-25.95	3.60-69.78	5.54–69.77
Область индексов h, k, l	$-10 \le h \le 9$	$-7 \le h \le 1$	$0 \le h \le 10$	$-7 \le h \le 7$
	$0 \le k \le 13$	$-10 \le k \le 10$	$0 \le k \le 20$	$0 \le k \le 18$
	$0 \le l \le 13$	$0 \le l \le 12$	$0 \le l \le 29$	$0 \le l \le 17$
Размеры кристалла, мм	$0.26 \times 0.29 \times 0.30$	$0.31 \times 0.32 \times 0.35$	$0.22 \times 0.24 \times 0.29$	$0.27 \times 0.29 \times 0.30$
Число измеренных отражений	1892	1158	3342	3271
Число независимых отражений	1799	1140	3342	3271
Кол-во отражений в МНК/кол-во уточняемых параметров	1799/114	1140/121	3342/456	3271/237
GooF	1.020	1.026	0.914	0.998
$R1/wR_2 [I \ge 2\sigma(I)]$	0.0581/0.1474	0.0667/0.1793	0.0830/0.1991	0.0607/0.1604
$\Delta \rho_{max} / \Delta \rho_{min}$, $\mathfrak{I} / \mathring{A}^3$	0.284/-0.232	0.172/-0.151	0.592/-0.208	0.303/-0.325

Таблица I. Кристаллографические характеристики, детали рентгендифракционного эксперимента и уточнения структуры II–V

Кембриджском банке структурных данных (версия 11.02) отсутствуют [14].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соединение I получено и исследовано нами ранее [11]. Синтез соединений II–V и их структуры описаны в настоящей работе.

4-метил-2-хлор-5,6,7,8-тетрагидрохинолин (2). Попытка превращения пиридона I в соответствующий хлорпиридин II простым кипячением в POCl₃ не увенчалась успехом, а методика [15] требует нагревания до 180°С в запаянной ампуле, что неудобно. Поэтому нами был разработан оригинальный путь синтеза соединения II. 10 г I и 11 г хлорида бензилтриметиламмония кипятили в 33 мл POCl₃ в колбе с обратным холодильником до прекращения выделения HCl (около 5 ч). Горячий однородный темный раствор вылили в стакан со льдом, добавили активированного угля, перемешали и отфильтровали. Полученный светлый раствор нейтрализовали твердым гидрокарбона-

КРИСТАЛЛОГРАФИЯ том 49 № 3 2004

том натрия до pH = 7, выпавший осадок отфильтровали. Получили белый порошок, который перекристаллизовали из хлороформа. Масса 8.6 г, выход 78%. $t_{\pi\pi}$ 35–40°С. ПМР δ (ДМСО- d_6): 1.82 (м, 4H, 6-CH₂ + 7-CH₂), 2.19 (с, 3H, 4-CH₃), 2.60 (т, 2H, 5-CH₂), 2.78 (т, 2H, 8-CH₂), 6.95 (с, 1H, 3-CH).

4-метил-2-метокси-5,6,7,8-тетрагидрохинолин III. При попытке получения метоксипиридина III из хлорпиридина II по методике [16] признаков реакции (выпадение хлорида натрия) не наблюдалось. Анализ реакционной смеси показал, что продукт не образовался, и исходное вещество осталось без изменений. Нами была предложена оригинальная методика с использованием высококипящего инертного растворителя, в котором растворяется как исходное вещество, так и метилат натрия, и который смешивается с водой для облегчения выделения продукта. Таким условиям удовлетворяет диглим. Металлический натрий (2.8 г) растворили в 20 мл абсолютного метанола, отогнали избыток метанола, добавили раствор 7.8 г соединения II в 40 мл абсолютного диглима.

Связь	d	Связь	d
N(1)–C(2)	1.301(4)	C(5)–C(10)	1.384(4)
N(1)-C(10)	1.344(4)	C(5)–C(6)	1.516(4)
C(2)–C(3)	1.357(4)	C(6)–C(7)	1.468(7)
C(2)–Cl(2)	1.754(3)	C(7)–C(8)	1.350(8)
C(3)–C(4)	1.377(4)	C(8)–C(9)	1.496(8)
C(4)–C(5)	1.388(4)	C(9)–C(10)	1.510(5)
C(4)–C(11)	1.502(4)		

Таблица 2. Длины связей d (Å) в структуре II

Таблица 3. Валентные углы ω (град) в структуре II

Угол	ω	Угол	ω
C(2)-N(1)-C(10)	116.1(2)	C(10)-C(5)-C(6)	120.9(3)
N(1)-C(2)-C(3)	126.5(3)	C(4)-C(5)-C(6)	120.5(3)
N(1)-C(2)-Cl(2)	115.4(2)	C(7)-C(6)-C(5)	114.3(4)
C(3)–C(2)–Cl(2)	118.1(2)	C(8)-C(7)-C(6)	119.9(5)
C(2)-C(3)-C(4)	117.8(3)	C(7)–C(8)–C(9)	120.5(5)
C(3)-C(4)-C(5)	118.2(3)	C(8)-C(9)-C(10)	111.9(4)
C(3)-C(4)-C(11)	119.9(3)	N(1)-C(10)-C(5)	122.8(3)
C(5)-C(4)-C(11)	121.9(3)	N(1)-C(10)-C(9)	114.7(3)
C(10)-C(5)-C(4)	118.5(2)	C(5)-C(10)-C(9)	122.5(3)

Таблица 4. Длины связей d(A) в структуре III

Связь	d	Связь	d
N(1)–C(2)	1.328(5)	C(5)–C(10)	1.337(5)
N(1)–C(10)	1.368(4)	C(5)–C(6)	1.537(4)
C(2)–O(1)	1.363(4)	C(6)–C(7)	1.531(6)
C(2)–C(3)	1.381(6)	C(7)–C(8)	1.444(7)
C(3)–C(4)	1.369(4)	C(8)–C(9)	1.501(5)
C(4)–C(5)	1.422(5)	C(9)–C(10)	1.514(5)
C(4)–C(11)	1.492(6)	O(1)–C(1)	1.402(6)

Таблица 5. Валентные углы ω (град) в структуре III

Угол	ω	Угол	ω
C(2)-N(1)-C(10)	115.3(3)	C(4)-C(5)-C(6)	118.5(3)
N(1)-C(2)-O(1)	118.7(4)	C(7)–C(6)–C(5)	111.2(3)
N(1)-C(2)-C(3)	124.8(3)	C(8)–C(7)–C(6)	115.1(3)
O(1)–C(2)–C(3)	116.5(3)	C(7)–C(8)–C(9)	113.2(4)
C(4)-C(3)-C(2)	118.7(3)	C(8)–C(9)–C(10)	112.4(3)
C(3)-C(4)-C(5)	117.9(4)	C(5)-C(10)-N(1)	124.5(3)
C(3)–C(4)–C(11)	120.7(3)	C(5)-C(10)-C(9)	122.8(3)
C(5)-C(4)-C(11)	121.4(3)	N(1)-C(10)-C(9)	112.6(3)
C(10)-C(5)-C(4)	118.7(3)	C(2)–O(1)–C(1)	118.1(3)
C(10)-C(5)-C(6)	122.8(3)		

Смесь нагревали при 120°С в течение 3 ч., что сопровождалось загустением смеси из-за выпадения большого количества осадка. Реакционную массу вылили в воду, перемешали, отфильтровали выпавший осадок и промыли его водой. Получили белый порошок, который перекристаллизовали из хлороформа. Масса 6.1 г, выход 80%. $t_{пл}$ 35– 40°С. ПМР δ (ДМСО- d_6): 1.80 (м, 4H, 6-CH₂ + 7-CH₂), 2.15 (с, 3H, 4-CH₃), 2.54 (т, 2H, 5-CH₂), 2.70 (т, 2H, 8-CH₂), 3.78 (с, 3H, OCH₃), 6.35 (с, 1H, 3-CH).

4-метил-2-(4-хлорфенацил)-5,6,7,8-тетрагидро-1H-хинолин-2-он (4). Синтез соединения IV синтезировано по модифицированной методику [16]. 3 г соединения III и 4 г 4-хлорфенацилбромида кипятили в 20 мл CH₃CN в колбе с обратным холодильником в течение 5 ч. При этом плохо растворимый 4-хлорфенацилбромид растворился. Степень прохождения реакции контролировали по ТСХ (гексан-этилацетат 1:1). Оба исходных вещества имеют $R_f 0.72$, а продукт имеет $R_f 0.1$. При охлаждении раствора выпали бесцветные кристаллы продукта, содержащие сольватные молекулы CH₃CN. В маточном растворе продукта почти не осталось. Масса 2 г, выход 40%. *t*_{пл} 163–165°С. ПМР δ (ДМСО-*d*₆): 1.75 (м, 4H, 6-CH₂ + 7-CH₂), 2.13 (с, 3H, 4-CH₃), 2.50 (M, 4H, 5-CH₂) + 8-CH₂), 5.45 (c, 2H, NCH₂CO), 6.15 (с, 1Н, 3-СН), 7.55, 8.10 (дд, 4Н, Аг).

2-(4-хлорфенил)-5-метил-6,7,8,9-Перхлорат тетрагидрооксазоло-[3,2-а]хинолин-10-илия (5). Синтез соединения V также проведен по отработанной нами ранее методике [16]. 1.2 г соединения IV растворили в 12 мл концентрированной H₂SO₄ и оставили на ночь. Раствор вылили в 100 мл 3% р-ра HClO₄, при этом выпал осадок. Раствор с осадком оставили на ночь, осадок отфильтровали и промыли водой. Полученный белый порошок перекристаллизовали из CH₃CN. Масса 1.5 г, выход 98%. *t*_{пл} 300°С (со взрывом). ПМР δ (ДМСО*d*₆): 1.95 (м, 2H, 7-CH₂), 2.05 (м, 2H, 8-CH₂), 2.58 (с, 3H, 5-CH₃), 2.85 (т, 2H, 6-CH₂), 3.15 (т, 2H, 9-CH₂), 7.63-7.66, 8.03-8.06 (дд, 4Н, Аг), 8.11 (с, 1Н, 4-СН), 9.37 (c, 1H, 1-CH).

Дифрактометрический эксперимент. Для монокристалов соединений II и III экспериментальные интенсивности дифракционных отражений получены при комнатной температуре на автоматическом дифрактометре CAD-4 [17] (λ Mo K_{α} , графитовый монохроматор). Параметры элементарной ячейки определяли и уточняли по 25 рефлексам в интервале углов 0 12-15°. Для соединений IV и V эксперимент проводили на дифракто- K_{α} , метре CAD-4 (λ Cu графитовый монохроматор). Параметры элементарной ячейки определяли и уточняли по 25 рефлексам в интервале углов θ 25-30°.

Поскольку кристаллы исследованных соединений имеют низкие линейные коэффициенты

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ

Таблица 6. Длины связей d (Å) в структуре IV

Связь	d	Связь	d
Cl(1)–C(17)	1.728(9)	C(7)–C(8)	1.438(15)
N(1)–C(2)	1.361(10)	C(8)–C(9)	1.471(13)
N(1)–C(10)	1.422(10)	C(9)–C(10)	1.513(11)
N(1)–C(12)	1.456(10)	C(12)–C(13)	1.509(11)
C(2)–O(2)	1.232(11)	C(13)–O(13)	1.215(9)
C(2)–C(3)	1.417(12)	C(13)–C(14)	1.495(10)
C(3)–C(4)	1.355(11)	C(14)–C(19)	1.390(10)
C(4)–C(5)	1.459(12)	C(14)–C(15)	1.402(10)
C(4)–C(11)	1.591(14)	C(15)–C(16)	1.375(10)
C(5)–C(10)	1.376(12)	C(16)–C(17)	1.376(10)
C(5)–C(6)	1.498(11)	C(17)–C(18)	1.377(11)
C(6)–C(7)	1.552(15)	C(18)–C(19)	1.389(11)

Таблица 7. Валентные углы ω (град) в структуре IV

Угол	ω	Угол	ω
C(2)–N(1)–C(10)	124.7(8)	C(5)-C(10)-N(1)	117.0(7)
C(2)-N(1)-C(12)	115.1(7)	C(5)-C(10)-C(9)	125.1(8)
C(10)-N(1)-C(12)	120.1(7)	N(1)-C(10)-C(9)	117.9(8)
O(2)-C(2)-N(1)	120.7(8)	N(1)-C(12)-C(13)	112.3(7)
O(2)–C(2)–C(3)	123.9(9)	O(13)-C(13)-C(14)	122.8(7)
N(1)-C(2)-C(3)	115.1(8)	O(13)-C(13)-C(12)	120.7(8)
C(4)-C(3)-C(2)	125.5(10)	C(14)-C(13)-C(12)	116.4(7)
C(3)-C(4)-C(5)	116.0(9)	C(19)-C(14)-C(15)	119.7(8)
C(3)-C(4)-C(11)	125.8(10)	C(19)-C(14)-C(13)	123.3(7)
C(5)-C(4)-C(11)	118.0(9)	C(15)-C(14)-C(13)	117.0(7)
C(10)-C(5)-C(4)	121.6(8)	C(16)-C(15)-C(14)	122.1(9)
C(10)-C(5)-C(6)	118.5(9)	C(15)-C(16)-C(17)	118.3(9)
C(4)-C(5)-C(6)	119.8(9)	C(16)-C(17)-C(18)	119.6(9)
C(5)-C(6)-C(7)	112.3(9)	C(16)–C(17)–Cl(1)	123.1(8)
C(8)-C(7)-C(6)	119.4(13)	C(18)–C(17)–Cl(1)	117.2(8)
C(7)-C(8)-C(9)	109.4(12)	C(17)–C(18)–C(19)	123.4(10)
C(8)-C(9)-C(10)	114.6(10)	C(18)-C(19)-C(14)	116.7(9)

Таблица 8. Длины связей d (Å) в структуре V

Связь	d	Связь	d
Cl(1)–C(18)	1.727(4)	C(7)–C(8)	1.423(5)
Cl(2)–O(23)	1.334(4)	C(7)–C(14)	1.506(5)
Cl(2)–O(21)	1.357(4)	C(8)–C(13)	1.359(5)
Cl(2)–O(24)	1.367(4)	C(8)–C(9)	1.515(5)
Cl(2)–O(22)	1.392(5)	C(9)–C(10)	1.555(6)
N(1)–C(5)	1.339(4)	C(10)–C(11)	1.467(7)
N(1)–C(13)	1.381(4)	C(11)–C(12)	1.520(6)
N(1)–C(2)	1.398(4)	C(12)–C(13)	1.501(5)
C(2)–C(3)	1.335(5)	C(15)–C(20)	1.382(5)
C(3)–O(4)	1.394(4)	C(15)–C(16)	1.388(5)
C(3)–C(15)	1.450(5)	C(16)–C(17)	1.376(5)
O(4)–C(5)	1.339(4)	C(17)–C(18)	1.387(6)
C(5)–C(6)	1.374(5)	C(18)–C(19)	1.380(6)
C(6)–C(7)	1.378(5)	C(19)–C(20)	1.370(5)

поглощения и малые размеры (удовлетворяют условию $\mu R \leq 0.4$), поправка на поглощение не вводилась. Первичная обработка массива экспериментальных данных проводилась по комплексу программ WinGX [18]. Все последующие расчеты выполнялись в рамках комплекса программ SHELX97 [19]. Кристаллические структуры определены прямыми методами с последующим уточнением позиционных и тепловых параметров в

Таблица 9. Валентные углы ω (град) в структуре V

Угол	ω	Угол	ω
O(23)–Cl(2)–O(21)	112.7(5)	C(13)-C(8)-C(7)	120.6(3)
O(23)Cl(2)O(24)	108.3(3)	C(13)-C(8)-C(9)	119.0(3)
O(21)-Cl(2)-O(24)	120.1(4)	C(7)–C(8)–C(9)	120.3(3)
O(23)-Cl(2)-O(22)	107.1(6)	C(8)-C(9)-C(10)	110.5(3)
O(21)-Cl(2)-O(22)	100.0(4)	C(11)-C(10)-C(9)	112.9(4)
O(24)-Cl(2)-O(22)	107.5(4)	C(10)-C(11)-C(12)	109.8(4)
C(5)-N(1)-C(13)	121.2(3)	C(13)-C(12)-C(11)	111.8(4)
C(5)-N(1)-C(2)	108.2(3)	C(8)-C(13)-N(1)	118.0(3)
C(13)–N(1)–C(2)	130.5(3)	C(8)-C(13)-C(12)	126.6(3)
C(3)-C(2)-N(1)	106.5(3)	N(1)-C(13)-C(12)	115.4(3)
C(2)-C(3)-O(4)	109.0(3)	C(20)–C(15)–C(16)	118.7(3)
C(2)-C(3)-C(15)	133.5(3)	C(20)–C(15)–C(3)	119.8(3)
O(4)-C(3)-C(15)	117.5(3)	C(16)–C(15)–C(3)	121.6(3)
C(5)-O(4)-C(3)	106.9(2)	C(17)-C(16)-C(15)	121.5(3)
N(1)-C(5)-O(4)	109.4(3)	C(16)-C(17)-C(18)	118.3(4)
N(1)-C(5)-C(6)	123.1(3)	C(19)–C(18)–C(17)	121.1(3)
O(4)-C(5)-C(6)	127.4(3)	C(19)–C(18)–Cl(1)	119.7(3)
C(5)-C(6)-C(7)	116.9(3)	C(17)–C(18)–Cl(1)	119.1(3)
C(6)-C(7)-C(8)	120.1(3)	C(20)–C(19)–C(18)	119.3(4)
C(6)-C(7)-C(14)	120.2(3)	C(19)-C(20)-C(15)	121.0(4)
C(8)-C(7)-C(14)	119.8(3)		

Рис. 1. Строение молекулы и нумерация атомов соединения II. Эллипсоиды тепловых колебаний здесь и далее приведены с вероятностью 50%.

анизотропном приближении для всех неводородных атомов.

Основные условия дифрактометрических экспериментов и кристаллографические характеристики соединений приведены в табл. 1. Межатомные расстояния и валентные углы систематизированы в табл. 2–9. Пространственное расположение атомов в молекулах, их нумерация и эллипсоиды тепловых колебаний показаны на рис. 1–4, полученных с использованием программы ORTEP-3 [20, 21].

Кристаллографическая информация по исследованным соединениям депонирована в Кембриджской Базе Структурных Данных (депоненты № 000001–000004).

РЕЗУЛЬТАТЫ И ОБСУЖДЕНИЕ

В молекуле II (рис. 1) 6-членный цикл N(1)...C(10) плоский с точностью до 0.011 Å. Атомы Cl(2), C(6), C(9) и C(11) лежат в плоскости этого цикла. Атомы С(7) и С(8) отклоняются от этой плоскости на 0.124 и -0.290 Å соответственно. Эллипсоиды тепловых колебаний атомов С(7) и С(8) характеризуются сильной анизотропией, вследствие чего расстояние между атомами С(7) и С(8) существенно короче (1.35 Å) расстояний C(5)-С(6), С(6)–С(7), С(8)–С(9) и С(9)–С(10) (табл. 2), однако с учетом анизотропии тепловых поправок [22], это расстояние составляет 1.58 Å, что соответствует *sp*³-гибридизации. По сравнению с исходным соединением I [11] одинарные связи гетероциклического фрагмента бицикла стали короче, а двойные - несколько длиннее, что отвечает ожидаемой ароматической структуре пиридинового фрагмента (схема 1).

Рис. 2. Строение молекулы и нумерация атомов соединения III.

В молекуле III (рис. 2) 6-членный цикл N(1)...C(10) плоский с точностью до 0.01 Å. Атомы O(1), C(1), C(6), C(9) и C(11) лежат в плоскости этого цикла. Атомы C(7) и C(8) отклоняются от этой плоскости на -0.237 и 0.405 Å соответственно. Эллипсоиды тепловых колебаний атомов C(7) и C(8), так же как и в молекуле II, сильно анизотропны, вследствие чего расстояние между атомами C(7) и C(8) укорочено (1.44 Å) расстояний C(5)–C(6), C(6)–C(7), C(8)–C(9) и C(9)–C(10) (табл. 4), однако с учетом анизотропии тепловых поправок [22], оно равно 1.57 Å, что соответствует *sp*³гибридизации. Как и в предыдущем случае, строение пиридинового фрагмента бицикла отвечает ожидаемой ароматической структуре (схема 1).

В кристаллах IV (рис. 3) из-за неполной заселенности позиций сольватных молекул CH₃CN возникли проблемы при уточнении структуры. Для их решения длины связей в двух кристаллографически независимых молекулах были попарно усреднены. 6-членный цикл N(1)...(10) плоский с точностью до 0.02 Å. Атомы O(1), C(1), C(6), С(9) и С(12) лежат в плоскости этого цикла. Атомы С(7), С(8) и С(11) отклоняются от этой плоскости на -0.256, 0.340 и -0.204 Å соответственно. Чередование одинарных и двойных связей в гетероцикле отвечает неароматической пиридоновой структуре (схема 1). Как и в структурах I – III, расстояние между атомами С(7) и С(8) укорочено (1.44 Å) (табл. 6), однако с учетом поправки [22], оно равнот 1.54 А. Фенильный цикл C(14)...C(19) плоский с точностью до 0.013 А. Атомы Cl(1), С(13) и С(12) лежат в плоскости этого цикла. Атомы O(13) и N(1) отклоняются от этой плоскости на -0.116 и -0.373 Å соответственно. Двугранный угол между плоскостями пиридонового фрагмента и арильной группы составляет 86.45°.

Рис. 3. Строение молекулы и нумерация атомов соединения IV. Сольватные молекула ацетонитрила на рисунке не показана.

Строение двух сольватных молекул CH₃CN типично и в комментариях не нуждается.

В катионе V (рис. 4) 9-членный оксазолопиридиниевый бицикл N(1)...C(13) плоский с точностью до 0.03 Å. Атомы C(12), C(14), C(15), C(19) и C(20) лежат в плоскости этого цикла. Атомы C(9), C(10), C(11), C(16), C(17) и C(18) отклоняются от этой плоскости на 0.119, 0.562, -0.225, 0.275, 0.348 и 0.226 Å соответственно. Фенильный цикл C(15)...C(20) плоский с точностью до 0.01 Å. Ато-

Рис. 4. Строение молекулы и нумерация атомов соединения V.

мы Cl(1) и C(3) лежат в плоскости этого цикла. Строение фенильного кольца отвечает ожидаемой ароматической структуре. Величина двугранного угла между гетероциклической и фенильной плоскостями составляет всего 7.37°, что свидетельствует в пользу сопряжения ароматических циклов.

Для катиона оксазолопиридиния можно написать три резонансные структуры, две с положи-

Схема 2.

Схема 3.

тельным зарядом на атоме азота и одну с зарядом на атоме кислорода:

Возникает вопрос, какая из этих формул точнее отражает строение катиона. Длины связей C(6)-C(7), C(7)-C(8) и C(8)-C(13) (рис. 5) равны 1.378(5), 1.423(5) и 1.359(5) Å соответственно (табл. 8). Такая фиксация двойных связей в пиридиновом фрагменте молекулы говорит о том, что формула А дает наименьший вклад. Для окончательного выбора между структурами В и С в Кембриджском банке структурных данных [14] (версия 11.02) был проведен поиск соединений, содержащих протонированную по атомам кислорода или азота (или алкилированную по атому кислорода) амидную группу. В результате было обнаружено, что длина связи С=О в таких фрагментах находится в пределах 1.25–1.30 Å, причем 60 формул было изображено с положительным зарядом на кислороде, и более 200 – с зарядом на атоме азота. В пиридонах длины связей С=О находятся в пределах 1.21–1.25 Å, что свидетельствует о некотором увеличении длины двойной связи углерод-кислород при ее протонировании (или алкилировании) по кислородному гетероатому. В структуре V длина связи C(5)–O(4) составляет 1.339(4) А, что занимает промежуточное положение между одинарной С-О и двойной связью в амидной группе с положительным зарядом. Длина связи N(1)-C(5) также равна 1.339(4) Å, что меньше длин двух других связей С-N при этом атоме азота (1.381(4) и 1.398(4) Å). На основании этих рассуждений можно сделать вывод, что строение катиона оксазолопиридиния представляет гибрид формул В и С (с несколько большим вкладом структуры В). Вероятно, наиболее адекватно строение катиона следует изображать с делокализацией заряда:

Эллипсоиды тепловых колебаний атомов кислорода в анионе перхлората сильно анизотропны в плоскости, перпендикулярной связи Cl–O (рис.4). Это говорит о наличии некоторой степени свободы вращения перхлорат-иона вокруг атома хлора.

Авторы выражают благодарность Российскому Фонду Фундаментальных Исследований за финансовую поддержку в оплате лицензии на пользование Кембриджским Банком Структурных Данных (грант 02-07-90322), а также фонду ИН-ТАС (грант INTAS 00-0711).

СПИСОК ЛИТЕРАТУРЫ

- 1. *Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. //* Кристаллография. 1999. Т. 44. №. 6. С. 1067.
- 2. *Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др.* // Кристаллография. 2000. Т. 45. №. 1. С. 108.
- 3. *Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др.* // Кристаллография. 2000. Т. 45. №. 2. С. 292.
- Рыбаков В.Б., Жуков С.Г., Пасичниченко К.Ю., Бабаев Е.В. // Координац. химия. 2000. Т. 26. № 9. С. 714.
- 5. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В., Зонневельд Э. // Кристаллография. 2001. Т. 46. № 3. С. 435.
- 6. Рыбаков В.Б., Троянов С.И., Бабаев Е.В. и др. // Кристаллография. 2001. Т. 46. № 5. С. 1069.
- Рыбаков В.Б., Бабаев Е.В., Пасичниченко К.Ю., Зонневельд Э. // Кристаллография. 2002. Т. 47. № 1. С. 76.
- 8. *Рыбаков В.Б., Бабаев Е.В., Чернышев В.В. //* Кристаллография. 2002. Т. 47. № 3. С. 473.
- 9. *Рыбаков В.Б., Бабаев Е.В.* Пасичниченко К.Ю., // Кристаллография. 2002. Т. 47. № 4. С. 678.
- Рыбаков В.Б., Бабаев Е.В., Цисевич А.А. и др. // Кристаллография. 2002. Т. 47. № 6. С. 1042.
- 11. Альбов Д.В., Рыбаков В.Б., Бабаев Е.В., Асланов Л.А. // Кристаллография. 2003. Т. 48. № 2. С. 277.
- 12. Рыбаков В.Б., Бобошко Л.Г., Бураков Н.И. и др. // Кристаллография. 2004. Т. 48. № 3. С. (в печати)
- 13. Альбов Д.В., Мазина О.С., Рыбаков В.Б. и др. // Кристаллография. 2003. Т. 48. № 5. С. (в печати)
- 14. Allen F.H. // Acta Cryst. B. 2002. V. B58. P. 380.
- 15. *Mertel H.E.* Pyridine and Derivatives. Part Three./Ed. Klingsberg E. Interscience, New York, 1962. P. 525.
- Babaev E.V., Efimov A.V., Maiboroda D.A., Jug K. // Eur. J. Org. Chem. 1998. P. 193.
- 17. Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, Netherlands, 1989.
- Farrugia L.J. WinGX. X-Ray Crystallographic Programs for Windows. University of Glasgow, U.K., 2003.
- 19. *Sheldrick G.M.* SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Gottingen, Germany, 1997.
- 20. *Burnett M.N., Johnson C.K.* ORTEP. Report ORNL 6895. Oak Ridge National Laboratory. Tennessee, USA.
- 21. Farrugia L.J. ORTEP-3 for Windows.
- 22. Busing W.R, Levy H.A. // Acta Crystallogr. 1964. V. 17. P. 142.