Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B.
Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State
University, 119992 Moscow, Russian
Federation

Correspondence e-mail:
albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
R factor $=0.045$
$w R$ factor $=0.103$
Data-to-parameter ratio $=15.7$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

In the pyridone ring of the title compound, $\mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO}$, single and double bonds alternate, though allowing some degree of delocalization.

Comment

In the course of our systematic study of the size effect of cycloalkane fragments on the reactivity of pyridine-based heterocycles, we have described earlier the crystal structure of 4-methyl-1,5,6,7-tetrahydro-2H-cyclopenta $[b]$ pyridin-2-one, (1) (Albov, Mazina et al., 2004). Our attempt to increase the yield in the reaction of O-methylation (Albov, Rybakov et al., 2004), using excess methyl iodide, caused the subsequent methylation at the N atom and led to the title compound, (2) (Fig. 1).

(1)

(2)

In the planar pyridone ring ($\mathrm{N} 1 / \mathrm{C} 9$) of (2) the single and double bonds alternate, though allowing some degree of delocalization. Atom C7 is displaced from the plane of the pyridone ring by 0.179 (2) \AA. Methylation of the N atom excludes hydrogen bonding and greatly changes the packing, but, in general, the structure of the bicyclic ring systems in (1) and (2) are identical.

Experimental

1,5,6,7-Tetrahydro- $2 H$-cyclopenta $[b]$ pyridin-2-one (6.48 g), (1), methyl iodide (12.35 g) and silver carbonate (6.00 g) were boiled in benzene (70 ml) for 50 h . The reaction flask was protected against light. The mixture was then filtered and the solvent was evaporated (yield $3.14 \mathrm{~g}, 38 \%$). The product was recrystallized from benzene (m.p. 383 K). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): 2.05 ($s, 3 \mathrm{H}, 10-$ CH_{3}), $2.10\left(\mathrm{~m}, 2 \mathrm{H}, 7-\mathrm{CH}_{2}\right), 2.68\left(t, 2 \mathrm{H}, 6-\mathrm{CH}_{2}\right), 2.90\left(t, 3 \mathrm{H}, 8-\mathrm{CH}_{3}\right)$, $3.31\left(s, 3 H, 11-\mathrm{CH}_{3}\right), 5.96(s, 1 \mathrm{H}, 3-\mathrm{CH})$.

Crystal data

$$
\begin{aligned}
& \mathrm{C}_{10} \mathrm{H}_{13} \mathrm{NO} \\
& M_{r}=163.21 \\
& \text { Monoclinic, } P 2_{1} / c \\
& a=9.7125(15) \AA \\
& b=6.8262(16) \AA \\
& c=15.285(3) \AA \\
& \beta=121.233(11)^{\circ} \\
& V=866.5(3) \AA^{3} \\
& Z=4
\end{aligned}
$$

Received 22 April 2004 Accepted 26 April 2004 Online 30 April 2004

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled ω scans
Absorption correction: none
1740 measured reflections
1740 independent reflections
1183 reflections with $I>2 \sigma(I)$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.045$
$w R\left(F^{2}\right)=0.103$
$S=0.87$
1740 reflections
111 parameters

$$
\begin{aligned}
& \theta_{\max }=74.9^{\circ} \\
& h=-12 \rightarrow 10 \\
& k=0 \rightarrow 8 \\
& l=0 \rightarrow 16 \\
& 1 \text { standard reflection } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { intensity decay: } 2 \%
\end{aligned}
$$

H -atom parameters constrained
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0733 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }<0.001$
$\Delta \rho_{\max }=0.18 \mathrm{e} \mathrm{A}^{-3}$
$\Delta \rho_{\min }=-0.16 \mathrm{e}^{-3}$

Table 1
Selected geometric parameters $\left(\AA^{\circ},^{\circ}\right)$.

N1-C9	$1.3666(16)$	C4-C10	$1.4940(19)$
N1-C2	$1.4027(18)$	C5-C9	$1.3490(17)$
N1-C11	$1.4574(17)$	C5-C6	$1.5052(18)$
C2-O2	$1.2469(16)$	C6-C7	$1.537(2)$
C2-C3	$1.427(2)$	C7-C8	$1.525(2)$
C3-C4	$1.3568(19)$	C8-C9	$1.5044(18)$
C4-C5	$1.4232(18)$		
C9-N1-C2	$120.81(10)$	C9-C5-C4	$119.64(11)$
C9-N1-C11	$120.91(12)$	C9-C5-C6	$111.04(12)$
C2-N1-C11	$118.28(11)$	C4-C5-C6	$129.21(12)$
O2-C2-N1	$119.67(13)$	C5-C6-C7	$103.41(11)$
O2-C2-C3	$124.94(14)$	C8-C7-C6	$107.84(12)$
N1-C2-C3	$115.38(11)$	C9-C8-C7	$102.93(11)$
C4-C3-C2	$123.92(13)$	C5-C9-N1	$122.57(12)$
C3-C4-C5	$117.55(12)$	C5-C9-C8	$112.87(11)$
C3-C4-C10	$122.49(13)$	N1-C9-C8	$124.55(11)$
C5-C4-C10	$119.93(12)$		

In (2), H atoms were included in calculated positions and refined as riding atoms. Calculated $\mathrm{C}-\mathrm{H}$ bond lengths are in the range $0.93-$ $0.97 \AA$. For methyl H atoms, $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier atoms; for other H atoms, $U_{\text {iso }}$ values were set to $1.2 U_{\text {eq }}$ of the carrier atoms.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97

Figure 1
ORTEP-3 (Farrugia, 1997) view of (2), with the atom numbering scheme. Displacement ellipsoids are drawn at the 50% probability level.
(Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project 02-07-90322).

References

Albov, D. V., Mazina, O. S., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004). Crystallogr. Rep. 49. In the press.

Albov, D. V., Rybakov, V. B., Babaev, E. V., Fedyanin, I. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, o892-o893.

Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

