Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Dmitry V. Albov,* Victor B. Rybakov, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
albov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.002 \AA$
Disorder in main residue
R factor $=0.041$
$w R$ factor $=0.106$
Data-to-parameter ratio $=14.5$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

1-(4-Chlorophenacyl)-4-methyl-6,7,8,9-tetrahydro-5H-cyclohepta[b]pyridin-2(1H)-one

In the pyridone ring of the title compound, $\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2}$, single and double bonds alternate, though allowing some degree of conjugation. One C atom in the cycloheptene ring is disordered over two positions, which form boat and chair conformations of cycloheptene, respectively.

Comment

In the course of our systematic study of the size effect of cycloalkane fragments on the reactivity of pyridine-based heterocycles (Albov, Rybakov, Babaev \& Aslanov, 2004), we have described earlier the crystal structure of 2-methoxy-4-methyl-6,7,8,9-tetrahydro-5H-cyclohepta $[b]$ pyridine,
(Albov, Rybakov, Babaev, Fedyanin \& Aslanov, 2004). We report here the crystal structure of the title compound, (2) (Fig. 1).

(2)

In the pyridone ring ($\mathrm{N} 1 / \mathrm{C} 11$) of (2), the single and double bonds alternate (Table 1), though allowing some degree of conjugation. Atoms C7 and C9 are displaced from the plane of the pyridone ring by 1.412 (4) and 1.322 (3) \AA, respectively. Atom C8 of the cycloheptene ring is disordered over two sites, with occupancies of 0.69 (1) and 0.31 (1), forming the boat and chair conformations of cycloheptene, respectively. The torsion angle $\mathrm{C} 20-\mathrm{C} 15-\mathrm{C} 14-\mathrm{O} 14$ is $24.4(2)^{\circ}$ and the dihedral angle between the benzene and pyridone rings is $49.88(6)^{\circ}$.

Experimental

Compound (1) (2.50 g) and 4-chlorophenacyl bromide (3.06 g) were boiled in acetonitrile for 6 h . When thin-layer chromatography showed only traces of the source compounds in the solution, the solvent was evaporated and the product was washed with acetone (yield $2.51 \mathrm{~g}, 58 \%$). The product was recrystallized from acetone

Received 15 April 2004 Accepted 21 April 2004 Online 30 April 2004
(m.p. 481-483 K). ${ }^{1} \mathrm{H}$ NMR (DMSO- $d_{6}, 400 \mathrm{MHz}$, p.p.m.): 1.55 (m, $\left.4 \mathrm{H}, 7-\mathrm{CH}_{2}+8-\mathrm{CH}_{2}\right), 1.78\left(m, 2 \mathrm{H}, 9-\mathrm{CH}_{2}\right), 2.65\left(m, 4 \mathrm{H}, 6-\mathrm{CH}_{2}+10-\right.$ CH_{2}), $5.66\left(s, 2 \mathrm{H}, 13-\mathrm{CH}_{2}\right), 6.10(s, 1 \mathrm{H}, 3-\mathrm{CH}), 7.56,8.08(d d, 4-\mathrm{H}$, Ar).

Crystal data

$\mathrm{C}_{19} \mathrm{H}_{20} \mathrm{ClNO}_{2}$
$M_{r}=329.81$
Triclinic, $P \overline{1}$
$a=7.9540$ (7) Å
$b=8.6902$ (7) \AA
$c=12.4984$ (8) \AA
$\alpha=108.342$ (6) ${ }^{\circ}$
$\beta=94.660(6)^{\circ}$
$\gamma=96.760(7)^{\circ}$
$V=807.88(11) \AA^{3}$

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.356 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Cu } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=30-35^{\circ} \\
& \mu=2.16 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Prism, colourless } \\
& 0.30 \times 0.30 \times 0.30 \mathrm{~mm}
\end{aligned}
$$

Data collection

Enraf-Nonius CAD
diffractometer
Non-profiled ω scan
Non-profiled ω scans
Absorption correction: none
$\theta_{\text {max }}=74.7^{\circ}$
$h=-9 \rightarrow 9$
$k=-10 \rightarrow 10$
$l=0 \rightarrow 15$
1 standard reflection every 200 reflections intensity decay: 1%
3173 independent reflections
2843 reflections with $I>2 \sigma(I)$

$$
\begin{aligned}
& w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0448 P)^{2}\right. \\
& +0.3555 P] \\
& \text { where } P=\left(F_{o}{ }^{2}+2 F_{c}^{2}\right) / 3 \\
& (\Delta / \sigma)_{\max }=0.001 \\
& \Delta \rho_{\max }=0.17 \mathrm{e} \AA^{-3} \\
& \Delta \rho_{\min }=
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.041$
$w R\left(F^{2}\right)=0.106$
$S=1.06$
3173 reflections
219 parameters

H -atom parameters constrained
Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{C} 11-\mathrm{C} 18$	$1.7414(16)$	$\mathrm{C} 6-\mathrm{C} 7$	$1.538(3)$
$\mathrm{N} 1-\mathrm{C} 11$	$1.3747(19)$	$\mathrm{C} 7-\mathrm{C} 8 B$	$1.485(9)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.399(2)$	$\mathrm{C} 7-\mathrm{C} 8 A$	$1.511(5)$
$\mathrm{N} 1-\mathrm{C} 13$	$1.4641(17)$	$\mathrm{C} 8 A-\mathrm{C} 9$	$1.434(4)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.241(2)$	$\mathrm{C} 8 B-\mathrm{C} 9$	$1.461(8)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.431(2)$	$\mathrm{C} 9-\mathrm{C} 10$	$1.542(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.357(2)$	$\mathrm{C} 10-\mathrm{C} 11$	$1.509(2)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.426(2)$	$\mathrm{C} 13-\mathrm{C} 14$	$1.5150(19)$
$\mathrm{C} 4-\mathrm{C} 12$	$1.509(2)$	$\mathrm{C} 14-\mathrm{O} 14$	$1.2122(18)$
$\mathrm{C} 5-\mathrm{C} 11$	$1.3730(19)$	$\mathrm{C} 14-\mathrm{C} 15$	$1.490(2)$
$\mathrm{C} 5-\mathrm{C} 6$	$1.507(2)$		
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 2$	$122.99(12)$	$\mathrm{C} 11-\mathrm{C} 5-\mathrm{C} 6$	$118.81(15)$
$\mathrm{C} 11-\mathrm{N} 1-\mathrm{C} 13$	$121.37(12)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{C} 6$	$122.58(14)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{C} 13$	$115.56(13)$	$\mathrm{C} 8 \mathrm{~B}-\mathrm{C} 9-\mathrm{C} 10$	$120.8(3)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$120.49(14)$	$\mathrm{C} 5-\mathrm{C} 11-\mathrm{N} 1$	$120.98(13)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$124.82(15)$	$\mathrm{C} 5-\mathrm{C} 11-\mathrm{C} 10$	$119.17(14)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.69(14)$	$\mathrm{N} 1-\mathrm{C} 11-\mathrm{C} 10$	$119.85(13)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.28(15)$	$\mathrm{N} 1-\mathrm{C} 13-\mathrm{C} 14$	$111.69(12)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$119.42(13)$	$\mathrm{O} 14-\mathrm{C} 14-\mathrm{C} 15$	$121.28(13)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 12$	$119.76(16)$	$\mathrm{O} 14-\mathrm{C} 14-\mathrm{C} 13$	$120.76(13)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 12$	$120.82(16)$	$\mathrm{C} 15-\mathrm{C} 14-\mathrm{C} 13$	$117.95(12)$
$\mathrm{C} 11-\mathrm{C} 5-\mathrm{C} 4$	$118.58(14)$		

All H atoms were positioned geometrically and refined as riding $(\mathrm{C}-\mathrm{H}=0.93-0.97 \AA)$, with $U_{\text {iso }}(\mathrm{H})=1.2$ or $1.5 U_{\text {eq }}(\mathrm{C})$.

Figure 1
ORTEP-3 (Farrugia, 1997) view of (2), with the atom-numbering scheme. Displacement ellipsoids are drawn at the 50% probability level. Only the major component of disordered atom C8, namely $\mathrm{C} 8 A$, is shown.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Albov, D. V., Rybakov, V. B., Babaev, E. V. \& Aslanov, L. A. (2004). Crystallogr. Rep. 49. In the press.
Albov, D. V., Rybakov, V. B., Babaev, E. V., Fedyanin, I. V. \& Aslanov, L. A. (2004). Acta Cryst. E60, o892-o893.

Enraf-Nonius (1994). CAD-4 EXPRESS. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

