Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Victor B. Rybakov,* Alexander A. Bush, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail: rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.003 Å R factor = 0.043 wR factor = 0.111 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e. In the crystal structure of the title compound, $C_7H_8N_2O_3$, molecules form centrosymmetrical dimers *via* $N-H\cdots O$ hydrogen bonds.

4,6-Dimethyl-5-nitro-1H-pyridin-2-one

Received 15 December 2003 Accepted 22 December 2003 Online 17 January 2004

Comment

Previously, we have reported the crystal structure determination of Guareschi pyridone (1*a*) (Rybakov *et al.*, 2004). Now we have investigated the crystal structure of a related compound, (2), which can be obtained from Guareschi pyridone. A search of Cambridge Structural Database (CSD, Version of November 2002; Allen, 2002) does not give any hits for 4,6-disubstitutied 5-nitro-pyridin-2-ones. The multistep synthesis of (2) has been performed previously (Mariella *et al.*, 1955) by nitration of Guareschi pyridone (1*a*) and further stepwise hydrolysis of the nitro derivative (1*b*) to amide (1*c*) and carboxylic acid (1*d*), followed by decarboxylation. To obtain compound (2), we simplified the earlier multistep procedure and, after obtaining the crude intermediate product (1*b*), converted it to the target compound (2) by prolonged reflux in sulfuric acid.

The structure of the six-membered heterocycle has a well defined diene-like fragment (Fig. 1); bond distances C3-C4 and C5-C6 are shorter than the C2-C3 and C4-C5 distances. The C-C bonds of the methyl groups, C4-C41 [1.499 (3) Å] and C6-C61 [1.501 (3) Å], are almost equal in length. The nitro group is twisted away from the attached ring; the dihedral angle between the heterocyclic ring and the O51/O52/N5/C5 plane is 39.36 (12)°. An intramolecular C61-H61B···O52 interaction is observed in the molecular structure. In the crystal structure, an N1-H1···O2(1-x, -y, 1-z) intermolecular hydrogen bond links the molecules into centrosymmetric dimers (see Fig. 2 and Table 2 for details).

Experimental

To a solution of pyridone (1*a*) (40 g, 0.22 mol) in 150 ml of 98% H_2SO_4 a mixture of fuming nitrous acid (13 ml) and sulfuric acid (14 ml) was carefully added dropwise, keeping the temperature in the

© 2004 International Union of Crystallography

Printed in Great Britain - all rights reserved

Figure 1

ORTEP-3 (Farrugia, 1997) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2

PLUTON97 (Spek, 1997) plot showing a N-H···O hydrogen bonded dimer.

range 313-318 K. Increasing the temperature to 338 K during the addition causes a violent explosion. The reaction mixture was kept for 5 d, and it was periodically heated to the temperature 333-343 K (and then even up to 373 K). When the TLC control displayed complete absence of the starting pyridone, the reaction mixture was poured into a fivefold excess of ice-cold water. The yellow precipitate was filtered and dried. The resulting material was dissolved in 50% H₂SO₄ and refluxed for 2 d. The reaction mixture was poured on to a fourfold excess of cold water, and the precipitate was filtered, washed with water $(2 \times 150 \text{ ml})$ and dried. The resulting nitropyridone (2) (12.5 g, 19%) has a melting point of 518 K, compared to 523 K reported by Mariella *et al.* (1955). ¹H NMR spectra (DMSO- d_6 , δ): 6.20 (H-3, s, 1H), 3.42 (NH, s, 1H), 2.35 (6-Me, s, 3H), 2.21 (4-Me, s, 3H).

Crystal data

$C_7H_8N_2O_3$	
$M_r = 168.15$	
Monoclinic, $P2_1/n$	
a = 9.7677 (15) Å	
b = 5.875 (3) Å	
c = 13.7295 (15) Å	
$\beta = 100.760 \ (10)^{\circ}$	
$V = 774.0 (4) \text{ Å}^3$	
Z = 4	

 $D_x = 1.443 \text{ Mg m}^{-3}$ Cu $K\alpha$ radiation Cell parameters from 25 reflections $\theta = 28 - 31^{\circ}$ $\mu=0.98~\mathrm{mm}^{-1}$ T = 293 (2) KNeedle, colourless $0.30 \times 0.10 \times 0.03 \text{ mm}$

Data collection

Enraf–Nonius CAD-4
diffractometer
Non-profiled ω scans
Absorption correction: none
1524 measured reflections
1462 independent reflections
999 reflections with $I > 2\sigma(I)$
$R_{\rm int} = 0.037$

Refinement

Refinement on F^2 $R[F^2 > 2\sigma(F^2)] = 0.043$ $wR(F^2) = 0.111$ S = 0.981462 reflections 113 parameters

Table 1 Selected geometric parameters (Å, °).

-			
N1-C6	1.343 (2)	C4-C41	1.499 (3)
N1-C2	1.379 (2)	C5-C6	1.375 (3)
N1-H1	0.84(2)	C5-N5	1.454 (3)
C2-O2	1.242 (2)	N5-O52	1.216 (2)
C2-C3	1.426 (3)	N5-O51	1.226 (2)
C3-C4	1.353 (3)	C6-C61	1.501 (3)
C4-C5	1.431 (3)		
C6-N1-C2	126.17 (19)	C6-C5-C4	121.33 (18)
C6-N1-H1	118.4 (13)	C6-C5-N5	118.52 (17)
C2-N1-H1	114.7 (13)	C4-C5-N5	120.14 (18)
O2-C2-N1	120.11 (19)	O52-N5-O51	122.6 (2)
O2-C2-C3	125.47 (18)	O52-N5-C5	119.40 (19)
N1-C2-C3	114.41 (19)	O51-N5-C5	117.95 (18)
C4-C3-C2	123.15 (19)	N1-C6-C5	117.41 (17)
C3-C4-C5	117.44 (19)	N1-C6-C61	115.33 (18)
C3-C4-C41	119.59 (18)	C5-C6-C61	127.25 (18)
C5-C4-C41	122.91 (19)		

 $\theta_{\rm max} = 69.9^{\circ}$ $h = -11 \rightarrow 11$ $k = 0 \rightarrow 7$ $l = 0 \rightarrow 16$ 1 standard reflection every 200 reflections frequency: 60 min intensity decay: none

refinement

 $(\Delta/\sigma)_{\rm max} < 0.001$

 $\Delta \rho_{\rm max} = 0.13 \text{ e} \text{ Å}^{-3}$ $\Delta \rho_{\rm min} = -0.15 \ {\rm e} \ {\rm \AA}^{-3}$

H atoms treated by a mixture of

 $w = 1/[\sigma^2(F_o^2) + (0.0554P)^2]$

where $P = (F_o^2 + 2F_c^2)/3$

independent and constrained

Table 2

Hydrogen-bonding geometry (Å, °).

$D - H \cdot \cdot \cdot A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdot \cdot \cdot A$
$ \begin{array}{c} N1 - H1 \cdots O2^{i} \\ C61 - H61 B \cdots O52 \end{array} $	0.84 (2)	1.94 (2)	2.776 (2)	176 (2)
	0.96	2.44	2.809 (3)	102

Symmetry code: (i) 1 - x, -y, 1 - z.

The H atom bonded to N atom was located in a difference map and refined isotropically [N-H = 0.84 (2) Å]. The H atoms bonded to C atoms were included in calculated positions (C-H = 0.93-0.96 Å) and refined as riding atoms, with $U_{iso}(H)$ set equal to $1.5U_{eq}(C)$ for methyl H atoms and $1.2U_{eq}(C3)$ for H3.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms & Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON97 (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Allen, H. F. (2002). Acta Cryst. B58, 380.

Enraf-Nonius (1994). CAD-4 EXPRESS Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.

Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.

Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837–838.

Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Mariella, R. P., Callahan, J. J. & Jibril, A. O. (1955). J. Org. Chem. 20, 1721– 1728.

Rybakov, V. B., Bush, A. A., Babaev, E. V., & Aslanov, L. A. (2004). Acta Cryst. E60, 0160–0161.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

Spek, A. L. (1997). PLUTON97. University of Utrecht, The Netherlands.