Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Victor B. Rybakov,* Alexander A.
Bush, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.043$
$w R$ factor $=0.111$
Data-to-parameter ratio $=12.9$

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

4,6-Dimethyl-5-nitro-1 H-pyridin-2-one

In the crystal structure of the title compound, $\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$, molecules form centrosymmetrical dimers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

Previously, we have reported the crystal structure determination of Guareschi pyridone (1a) (Rybakov et al., 2004). Now we have investigated the crystal structure of a related compound, (2), which can be obtained from Guareschi pyridone. A search of Cambridge Structural Database (CSD, Version of November 2002; Allen, 2002) does not give any hits for 4,6-disubstitutied 5-nitro-pyridin-2-ones. The multistep synthesis of (2) has been performed previously (Mariella et al., 1955) by nitration of Guareschi pyridone (1a) and further stepwise hydrolysis of the nitro derivative (1b) to amide (1c) and carboxylic acid ($1 d$), followed by decarboxylation. To obtain compound (2), we simplified the earlier multistep procedure and, after obtaining the crude intermediate product (1b), converted it to the target compound (2) by prolonged reflux in sulfuric acid.

The structure of the six-membered heterocycle has a well defined diene-like fragment (Fig. 1); bond distances C3-C4 and C5-C6 are shorter than the $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 4-\mathrm{C} 5$ distances. The $\mathrm{C}-\mathrm{C}$ bonds of the methyl groups, $\mathrm{C} 4-\mathrm{C} 41$ [1.499 (3) Å] and C6-C61 [1.501 (3) Å], are almost equal in length. The nitro group is twisted away from the attached ring; the dihedral angle between the heterocyclic ring and the O51/ O52/N5/C5 plane is $39.36(12)^{\circ}$. An intramolecular C61H61B...O52 interaction is observed in the molecular structure. In the crystal structure, an $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2(1-x,-y$, $1-z)$ intermolecular hydrogen bond links the molecules into centrosymmetric dimers (see Fig. 2 and Table 2 for details).

Experimental

To a solution of pyridone ($1 a$) ($40 \mathrm{~g}, 0.22 \mathrm{~mol}$) in 150 ml of 98% $\mathrm{H}_{2} \mathrm{SO}_{4}$ a mixture of fuming nitrous acid (13 ml) and sulfuric acid $(14 \mathrm{ml})$ was carefully added dropwise, keeping the temperature in the

Received 15 December 2003 Accepted 22 December 2003 Online 17 January 2004

Figure 1

ORTEP-3 (Farrugia, 1997) plot of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

Figure 2
PLUTON97 (Spek, 1997) plot showing a $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonded dimer.
range $313-318 \mathrm{~K}$. Increasing the temperature to 338 K during the addition causes a violent explosion. The reaction mixture was kept for 5 d , and it was periodically heated to the temperature $333-343 \mathrm{~K}$ (and then even up to 373 K). When the TLC control displayed complete absence of the starting pyridone, the reaction mixture was poured into a fivefold excess of ice-cold water. The yellow precipitate was filtered and dried. The resulting material was dissolved in 50% $\mathrm{H}_{2} \mathrm{SO}_{4}$ and refluxed for 2 d . The reaction mixture was poured on to a fourfold excess of cold water, and the precipitate was filtered, washed with water ($2 \times 150 \mathrm{ml}$) and dried. The resulting nitropyridone (2) $(12.5 \mathrm{~g}, 19 \%)$ has a melting point of 518 K , compared to 523 K reported by Mariella et al. (1955). ${ }^{1} \mathrm{H}$ NMR spectra (DMSO- d_{6}, δ): $6.20(\mathrm{H}-3, s, 1 \mathrm{H}), 3.42(\mathrm{NH}, s, 1 \mathrm{H}), 2.35(6-\mathrm{Me}, s, 3 \mathrm{H}), 2.21(4-\mathrm{Me}, s$, $3 \mathrm{H})$.

Crystal data

$\mathrm{C}_{7} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}_{3}$
$M_{r}=168.15$
Monoclinic, $P 2_{1} / n$
$a=9.7677(15) \AA$
$b=5.875$ (3) A
$c=13.7295(15) \AA$
$\beta=100.760(10)^{\circ}$
$V=774.0(4) \AA^{3}$
$Z=4$
$D_{x}=1.443 \mathrm{Mg} \mathrm{m}^{-3}$
$\mathrm{Cu} K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=28-31^{\circ}$
$\mu=0.98 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Needle, colourless
$0.30 \times 0.10 \times 0.03 \mathrm{~mm}$

Data collection

Enraf-Nonius CAD-4
diffractometer
Non-profiled ω scans
Absorption correction: none
1524 measured reflections
1462 independent reflections
999 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.037$

$$
\begin{aligned}
& \theta_{\max }=69.9^{\circ} \\
& h=-11 \rightarrow 11 \\
& k=0 \rightarrow 7 \\
& l=0 \rightarrow 16 \\
& 1 \text { standard reflection } \\
& \quad \text { every } 200 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: none }
\end{aligned}
$$

Refinement

Refinement on F^{2}
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.043$
$w R\left(F^{2}\right)=0.111$
$S=0.98$
1462 reflections
1462 reflections

Table 1
Selected geometric parameters ($\mathrm{A}^{\circ}{ }^{\circ}$).

$\mathrm{N} 1-\mathrm{C} 6$	$1.343(2)$	$\mathrm{C} 4-\mathrm{C} 41$	$1.499(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.379(2)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.375(3)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.84(2)$	$\mathrm{C} 5-\mathrm{N} 5$	$1.454(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.242(2)$	$\mathrm{N} 5-\mathrm{O} 52$	$1.216(2)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.426(3)$	$\mathrm{N} 5-\mathrm{O} 51$	$1.226(2)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.353(3)$	$\mathrm{C} 6-\mathrm{C} 61$	$1.501(3)$
$\mathrm{C} 4-\mathrm{C} 5$	$1.431(3)$		
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$126.17(19)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$121.33(18)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	$118.4(13)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{N} 5$	$118.52(17)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	$114.7(13)$	$\mathrm{C} 4-\mathrm{C} 5-\mathrm{N} 5$	$120.14(18)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$120.11(19)$	$\mathrm{O} 52-\mathrm{N} 5-\mathrm{O} 51$	$122.6(2)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$125.47(18)$	$\mathrm{O} 52-\mathrm{N} 5-\mathrm{C} 5$	$119.40(19)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$114.41(19)$	$\mathrm{O} 51-\mathrm{N} 5-\mathrm{C} 5$	$117.95(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$123.15(19)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$117.41(17)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$117.44(19)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 61$	$115.33(18)$
$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 41$	$119.59(18)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 61$	$127.25(18)$
$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 41$	$122.91(19)$		

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{\text {i }}$	$0.84(2)$	$1.94(2)$	$2.776(2)$	$176(2)$
$\mathrm{C} 61-\mathrm{H} 61 B \cdots \mathrm{O} 52$	0.96	2.44	$2.809(3)$	102

Symmetry code: (i) $1-x,-y, 1-z$.
The H atom bonded to N atom was located in a difference map and refined isotropically $[\mathrm{N}-\mathrm{H}=0.84$ (2) \AA]. The H atoms bonded to C atoms were included in calculated positions ($\mathrm{C}-\mathrm{H}=0.93-0.96 \AA$) and refined as riding atoms, with $U_{\text {iso }}(\mathrm{H})$ set equal to $1.5 U_{\text {eq }}(\mathrm{C})$ for methyl H atoms and $1.2 U_{\text {eq }}(\mathrm{C} 3)$ for H 3 .

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON97 (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

organic papers

References

Allen, H. F. (2002). Acta Cryst. B58, 380.
Enraf-Nonius (1994). CAD-4 EXPRESS Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.

Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Mariella, R. P., Callahan, J. J. \& Jibril, A. O. (1955). J. Org. Chem. 20, 17211728.

Rybakov, V. B., Bush, A. A., Babaev, E. V., \& Aslanov, L. A. (2004). Acta Cryst. E60, o160-o161.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany
Spek, A. L. (1997). PLUTON97. University of Utrecht, The Netherlands.

