Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Victor B. Rybakov,* Alexander A. Bush, Eugene V. Babaev and Leonid A. Aslanov

Department of Chemistry, Moscow State University, 119992 Moscow, Russian Federation

Correspondence e-mail:
rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.003 \AA$
R factor $=0.047$
$w R$ factor $=0.138$
Data-to-parameter ratio $=13.0$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2004 International Union of Crystallography Printed in Great Britain - all rights reserved

3-Cyano-4,6-dimethyl-2-pyridone (Guareschi pyridone)

In the crystal structure of the title compound, $\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$, the molecules form centrosymmetric dimers via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds.

Comment

The 'Guareschi pyridone' (3-cyano-4,6-dimethyl-2-pyridone), (3), has been known for more than a century (Guareschi, 1899). Surprisingly, an analysis of its crystal structure has never been performed. The title compound, (3), was prepared according to the classical scheme:

The six-membered heterocycle has a well defined diene-like structure; the bond distances $\mathrm{C} 3-\mathrm{C} 4$ and $\mathrm{C} 5-\mathrm{C} 6$ are shorter than the bonds $\mathrm{C} 2-\mathrm{C} 3$ and $\mathrm{C} 4-\mathrm{C} 5$ by more than 3 s.u.

A search of the Cambridge Structural Database (CSD; Version of November 2002; Allen, 2002) gives very few hits for 4,6-disubstituted 3-cyano-2-pyridones. Among these are 3-cyano-6-phenyl-4-trifluoromethyl-2-pyridone (Mishnev et al., 1986) and 3-cyano-6-methyl-2-pyridone (Munakata et al., 1996). The rigid cyano group has the standard linear structure, the bond distance, $\mathrm{C} 31 \equiv \mathrm{~N} 31$ of 1.130 (3) \AA, in compound (3) being shorter by $0.01 \AA$ than the $\mathrm{C} \equiv \mathrm{N}$ bond length in the two above-mentioned pyridones. The $\mathrm{C}-\mathrm{C}$ bonds of methyl groups $\mathrm{C} 4-\mathrm{C} 41[1.502$ (3) \AA] and $\mathrm{C} 6-\mathrm{C} 61$ [1.504 (3) \AA] are almost equal in length. The latter is longer than the bond distance $\mathrm{C} 6-\mathrm{Ph}(1.475 \AA$) in 3-cyano-6-phenyl-4-trifluoro-methyl-2-pyridone (Mishnev et al., 1986); this can be explained by conjugation between the phenyl and pyridine rings.

The $\mathrm{N} 1-\mathrm{H} 1 \cdots \mathrm{O} 2$ intermolecular hydrogen bond links the molecules in the crystal structure into centrosymmetric dimers (Fig. 2 and Table 2).

The formation of such centrosymmetric dimers, through intermolecular hydrogen bonding, seems to be typical of 2-pyridones in the crystalline state (Cody, 1987; Dorigo et al., 1993; Mishnev et al., 1986; Munakata et al., 1996).

Experimental

Cyanoacetamide $\left[\mathrm{NCCH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{NH}_{2}\right](33.98 \mathrm{~g}, 0.40 \mathrm{~mol})$, (2), was dissolved in a solution of $\mathrm{NaHCO}_{3}(33.98 \mathrm{~g}, 0.40 \mathrm{~mol})$ in 200 ml of $\mathrm{H}_{2} \mathrm{O}$ at $323-333 \mathrm{~K}$. Acetylacetone $\left[\mathrm{CH}_{3} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{2} \mathrm{C}(\mathrm{O}) \mathrm{CH}_{3}\right](40.45 \mathrm{~g}$, 0.40 mol), (1), was added to this solution with vigorous stirring. The colour of the mixture turned yellow and then red, and 3-cyano-4,6-dimethyl-2-pyridone, (3), started to precipitate after 5-7 min. The mixture was allowed to stand overnight, the product filtered, washed

Received 1 December 2003
Accepted 18 December 2003
Online 10 January 2004

Figure 1

ORTEP-3 (Farrugia, 1997) plot of the molecule of the title compound. Displacement ellipsoids are drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radii.

Figure 2
PLUTON97 (Spek, 1997) diagram, showing the hydrogen bonds as dashed lines.
with cold water ($3 \times 150 \mathrm{ml}$), and dried (yield: $58.16 \mathrm{~g}, 97 \%$). The product was recrystallized from $\mathrm{C}_{2} \mathrm{H}_{5} \mathrm{OH}$; m.p. $563-565 \mathrm{~K}$. Literature m.p. 563 K (Alberola et al., 1999). ${ }^{1} \mathrm{H}$ NMR $\left(\mathrm{CDCl}_{3}, 400 \mathrm{MHz}\right.$, p.p.m.): $6.10(s, 1 \mathrm{H}, 5 \mathrm{H}), 2.45\left(3 \mathrm{H}, s, 4-\mathrm{CH}_{3}\right), 2.40\left(3 \mathrm{H}, s, 6-\mathrm{CH}_{3}\right)$. The ${ }^{1} \mathrm{H}$ NMR spectrum of (3) was recorded on a Bruker AMX-400.

Crystal data

$\mathrm{C}_{8} \mathrm{H}_{8} \mathrm{~N}_{2} \mathrm{O}$

$M_{r}=148.16$
Triclinic, $P \overline{1}$
$a=3.975$ (4) \AA
$b=7.417$ (4) \AA
$c=12.820(8) \AA$
$\alpha=76.36(4)^{\circ}$
$\beta=88.54$ (4) ${ }^{\circ}$
$\gamma=88.62(4)^{\circ}$
$V=367.1$ (5) \AA^{3}

$$
\begin{aligned}
& Z=2 \\
& D_{x}=1.340 \mathrm{Mg} \mathrm{~m}^{-3} \\
& \text { Cu } K \alpha \text { radiation } \\
& \text { Cell parameters from } 25 \\
& \text { reflections } \\
& \theta=22.5-27.0^{\circ} \\
& \mu=0.75 \mathrm{~mm}^{-1} \\
& T=293(2) \mathrm{K} \\
& \text { Cube, colourless } \\
& 0.30 \times 0.30 \times 0.30 \mathrm{~mm} \\
& \\
& \\
& \theta_{\text {max }}=69.9^{\circ} \\
& h=-4 \rightarrow 4 \\
& k=-8 \rightarrow 9 \\
& l=0 \rightarrow 15 \\
& 1 \text { standard reflection } \\
& \text { every } 200 \text { reflections } \\
& \text { frequency: } 60 \text { min } \\
& \text { intensity decay: } 1 \%
\end{aligned}
$$

Refinement

Refinement on F^{2}

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w R\left(F^{2}\right)=0.138$
$S=1.08$
1377 reflections
106 parameters
H atoms treated by a mixture of independent and constrained refinement

Table 1
Selected geometric parameters ($\left({ }^{\circ},{ }^{\circ}\right)$.

$\mathrm{N} 1-\mathrm{C} 6$	$1.351(2)$	$\mathrm{C} 3-\mathrm{C} 31$	$1.445(3)$
$\mathrm{N} 1-\mathrm{C} 2$	$1.389(2)$	$\mathrm{C} 31-\mathrm{N} 31$	$1.130(3)$
$\mathrm{N} 1-\mathrm{H} 1$	$0.93(2)$	$\mathrm{C} 4-\mathrm{C} 5$	$1.411(3)$
$\mathrm{C} 2-\mathrm{O} 2$	$1.235(2)$	$\mathrm{C} 4-\mathrm{C} 41$	$1.502(3)$
$\mathrm{C} 2-\mathrm{C} 3$	$1.432(3)$	$\mathrm{C} 5-\mathrm{C} 6$	$1.358(3)$
$\mathrm{C} 3-\mathrm{C} 4$	$1.388(3)$	$\mathrm{C} 6-\mathrm{C} 61$	$1.504(3)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{C} 2$	$125.03(16)$	$\mathrm{N} 31-\mathrm{C} 31-\mathrm{C} 3$	$178.69(19)$
$\mathrm{C} 6-\mathrm{N} 1-\mathrm{H} 1$	$117.2(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 5$	$118.54(17)$
$\mathrm{C} 2-\mathrm{N} 1-\mathrm{H} 1$	$117.7(13)$	$\mathrm{C} 3-\mathrm{C} 4-\mathrm{C} 41$	$121.13(17)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{N} 1$	$120.56(17)$	$\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 41$	$120.33(17)$
$\mathrm{O} 2-\mathrm{C} 2-\mathrm{C} 3$	$125.83(18)$	$\mathrm{C} 6-\mathrm{C} 5-\mathrm{C} 4$	$119.63(17)$
$\mathrm{N} 1-\mathrm{C} 2-\mathrm{C} 3$	$113.62(15)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 5$	$120.46(18)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2$	$122.72(17)$	$\mathrm{N} 1-\mathrm{C} 6-\mathrm{C} 61$	$115.58(17)$
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 31$	$120.59(16)$	$\mathrm{C} 5-\mathrm{C} 6-\mathrm{C} 61$	$123.96(18)$
$\mathrm{C} 2-\mathrm{C} 3-\mathrm{C} 31$	$116.67(16)$		

Table 2
Hydrogen-bonding geometry $\left(\AA{ }^{\circ},{ }^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 1 \cdots \mathrm{O}^{2}{ }^{\mathrm{i}}$	$0.93(2)$	$1.89(2)$	$2.810(3)$	$171(2)$

Symmetry code: (i) $1-x, 1-y,-z$.

The H atom bonded to N was refined isotropically. H atoms bonded to C atoms were included in calculated positions and refined as riding, with $\mathrm{Cs} p^{2}-\mathrm{H}=0.93 \AA$ and $\mathrm{C} s p^{3}-\mathrm{H}=0.96 \AA$. For methyl H atoms, $U_{\text {iso }}$ values were set equal to $1.5 U_{\text {eq }}$ of the carrier atom; for other H atoms, $U_{\text {iso }}$ values were set equal to $1.2 U_{\text {eq }}$ of the carrier atom.

Data collection: CAD-4 EXPRESS (Enraf-Nonius, 1994); cell refinement: CAD-4 EXPRESS; data reduction: XCAD4 (Harms \& Wocadlo, 1995); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 for Windows (Farrugia, 1997) and PLUTON97 (Spek, 1997); software used to prepare material for publication: WinGX (Farrugia, 1999).

The authors are indebted to the Russian Foundation for Basic Research for covering the licence fee for use of the Cambridge Structural Database (project No. 02-07-90322).

References

Alberola, A., Calvo, L. A., Ortega, A. G., Ruí, M. C. S., Yustos, P., Granda, S. G. \& García-Rodriguez, E. (1999). J. Org. Chem. 64, 9493-9498..

Allen, F. H. (2002). Acta Cryst. B58, 380-388.
Cody, V. (1987). Acta Cryst. C43, 1325-1328.
Dorigo, P., Gaion, R. M., Belluco, P., Fraccarollo, D., Maragno, I., Bombieri, G., Benetollo, F., Mosti, L. \& Opini, F. (1993). J. Med. Chem. 36, 2475-2484.
Enraf-Nonius (1994). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1997). J. Appl. Cryst. 30, 565.
Farrugia, L. J. (1999). J. Appl. Cryst. 32, 837-838.
Guareschi, G. (1899). Chem. Zblt. 1, 289.
Harms, K. \& Wocadlo, S. (1995). XCAD4. University of Marburg, Germany.
Mishnev, A. F., Belyakov, S. V., Bleidelis, Ya. Ya., Apinitis, S. K., Gudrinietse, E. Yu. (1986). Kristallografiya (Crystallogr. Rep.), 31, 297-302.

Munakata, M., Wu, L. P., Yamamoto, M., Kuroda-Sowa, T. \& Maekawa, M. (1996). J. Am. Chem. Soc. 118, 3117-3124.

Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.
Spek, A. L. (1997). PLUTON97. University of Utrecht, The Netherlands.

