СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 8. СИНТЕЗ И ИССЛЕДОВАНИЕ СТРУКТУРЫ ДИМЕТИЛОВОГО ЭФИРА 3-(*n*-ХЛОРБЕНЗОИЛ)-5-ХЛОРИНДОЛИЗИН-1,2-ДИКАРБОНОВОЙ КИСЛОТЫ И 1,2-БИС(КАРБМЕТОКСИ)-6-ХЛОР-3Н-ИЗОХИНОЛИНО[1,2,3-*d*,*c*]ИНДОЛИЗИНОН-3 КАК ПРОДУКТА ЕГО ЦИКЛИЗАЦИИ МЕТОДОМ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ

© 2002 г. В. Б. Рыбаков¹, Е. В. Бабаев, К. Ю. Пасичниченко

Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 19.12.2001 г.

Осуществлен синтез диметилового эфира 3-(*n*-хлорбензоил)-5-хлориндолизин-1,2-дикарбоновой кислоты $C_{19}H_{13}Cl_2NO_5$ (2) и 1,2-бис(карбметокси)-6-хлор-3*H*-изохинолино[1,2,3-*d*,*c*]индолизинона-3 $C_{19}H_{12}CINO_5$ (3) как продукта циклизации 2. Методом монокристальной дифракции определено их молекулярное и кристаллическое строение. Кристаллы 2 моноклинные: a = 9.627(3), b = 6.646(2), c = 28.500(9) Å, $\beta = 98.72(2)^\circ$, Z = 4, пр. гр. $P2_1/c$; кристаллы 3 моноклинные: a = 7.048(4), b = 10.582(4), c = 21.760(7) Å, $\beta = 97.23(4)^\circ$, Z = 4, пр. гр. $P2_1/c$. Структуры решены прямыми методами и уточнены полноматричным МНК в анизотропном приближении до R = 0.0504 и R = 0.0510 для 2 и 3 соответственно. В обеих структурах отмечены как внутри-, так и межмолекулярные контакты с участием атомов C, H и O.

введение

Данная статья является продолжением проводимых нами структурных исследований гетероциклических соединений, обладающих способностью легко вступать в различные перегруппировки и реакции трансформации циклов [1–14]. Как и в предыдущих работах, мы последовательно изучаем методом рентгеноструктурного анализа (**PCA**) строение всех интермедиатов и конечных продуктов многоступенчатых реакций, сложных циклизаций и рециклизаций. Данные о строении молекул, обсуждаемых в настоящей статье, в Кембриджском банке структурных данных [15] отсутствуют.

Синтез индолизина 2 осуществлен реакцией соли пиридиния 1 с эфиром ацетилендикарбоновой кислоты в соответствии со схемой

В 17 мл сухого диметилформамида (ДМФ) при подогревании до 40°С растворили 1.5 г (4.32 ммоль) соли 1 и 0.642 г (4.52 ммоль) диметилового эфира ацетилендикарбоновой кислоты. Раствор охлади-

¹E-mail: rybakov@biocryst.phys.msu.su

ли до комнатной температуры и добавили 0.496 г (4.91 ммоль) абс. Et_3 N. Полученный при этом раствор красно-коричневого цвета выдержали в течение суток при комнатной температуре и вылили, перемешивая, в 400 мл воды. Выпавший осадок отфильтровали, промыли водой (5 × 30 мл) и высушили. Полученный зеленоватый аморфный порошок растворили в минимальном количестве MeOH, пропустили через колонку с SiO₂ (Silpearl, $l_{\text{кол}} = 5, d_{\text{кол}} = 2$ см, элюент *Me*OH) для очистки от примесей смол и ДМФ, элюат упаривали досуха, остаток (1.70 г, 96.8%) очистили колоночной хроматографией на SiO₂ (Silpearl, $l_{\text{кол}} = 8$, $d_{\text{кол}} = 1.5$ см, элюент бензол : ацетон = 10 : 1), получили 0.71 г (40%) индолизина 2 желтого цвета, $t_{nn} = 175 - 7^{\circ}C$ (MeOH). Спектр ПМР не противоречит структуре, приписываемой веществу. Индолизин 2 является неустойчивым соединением и при продолжительном стоянии или взаимодействии с окисью алюминия подвергается внутримолекулярной циклизации. Нами обнаружено, что продуктом циклизации индолизина 2 является тетрациклическая структура 3:

В 20 мл CHCl₃ растворили 20 мг индолизина 2, добавили 0.5 г Al₂O₃ (для хроматографии степень активности по Брокману III) и упарили растворитель досуха. Окись алюминия с адсорбированным веществом выдержали при комнатной температуре в течение двух суток, экстрагировали 2×20 мл СНСІ₃, экстракт упарили, получили 15 мг (83%) соединения 2, $t_{nn} = 193-4^{\circ}$ С.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Сбор экспериментальных данных для РСА осуществляли при комнатной температуре на четырехкружном дифрактометре САD-4 (Enraf-Nonius) [16] (Мо K_{α} -излучение, графитовый монохроматор, ω -2 θ -сканирование). Параметры элементарных ячеек определяли и уточняли по 25 рефлексам в интервале углов θ 14°–16°. Кристаллографические характеристики соединений 2 и 3 приведены в табл. 1. Поскольку кристаллы исследованных соединений имеют низкие линейные коэффициенты поглощения и малые размеры, эмпирическая поправка на поглощение не вводилась.

Первичная обработка массивов экспериментальных данных проводилась по комплексу программ WinGX98 [17]. Определение кристаллических структур осуществляли прямыми методами с последующим уточнением позиционных и тепловых параметров в анизотропном приближении для всех неводородных атомов. Все расчеты по решению и уточнению кристаллических структур сделаны с использованием программного комплекса SHELX97 [18]. Все атомы водорода в обеих структурах были локализованы из разностных фурье-синтезов и уточнялись в изотропном приближении тепловых параметров. Координаты атомов и их эквивалентные тепловые параме-

Таблица 1. Кристаллографические характеристики, детали рентгендифракционного эксперимента и уточнения для структур 2 и 3

Соединение	C ₁₉ H ₁₃ Cl ₂ NO ₅ (2)	C ₁₉ H ₁₂ ClNO ₅ (3)
Сингония	Моноклинная	Моноклинная
Пространственная группа	$P2_1/c$	$P2_1/c$
<i>a</i> , Å	9.627(3)	7.048(4)
b, Å	6.646(2)	10.582(4)
<i>c</i> , Å	28.500(9)	21.760(7)
β, град	98.72(2)	97.23(4)
V, Å ³	1802.4(9)	1610(1)
Ζ	4	4
$\rho_{\rm rely}, r/cm^3$	1.497	1.525
$\mu(Mo, K_{\alpha}), $ см ⁻¹	3.92	2.70
Размеры кристалла, мм	0.24 imes 0.12 imes 0.06	0.50 imes 0.20 imes 0.10
θ _{max} , град	25	26
Число рефлексов с $I \ge 2\sigma(I)/число параметров$	1679/297	2538/284
R_1/wR_2	0.0504/0.0575	0.0510/0.0426
$\Delta \rho_{\text{max}} / \Delta \rho_{\text{min}}, \mathfrak{z} / \mathring{A}^3$	0.173/-0.196	0.159/-0.166

Атом	x	у	z	$U_{3 \mathrm{KB}} / U_{\mathrm{H30}}$	Атом	x	у	Z	$U_{ m экв}/U_{ m изо}$
Cl(1)	2392(1)	1572(2)	1586(1)	51(1)	C(14)	-2082(3)	4406(6)	-18(1)	61(2)
Cl(2)	-2706(1)	6002(2)	-483(1)	125(1)	C(15)	-1769(4)	2404(6)	-103(1)	59(2)
N(1)	133(2)	1089(4)	2015(1)	22(1)	C(16)	-1273(3)	1200(7)	261(1)	58(1)
O(1)	-4394(2)	1008(4)	2310(1)	61(1)	C(17)	-3213(3)	1239(6)	2494(1)	35(1)
O(2)	-2823(2)	1475(4)	2960(1)	45(1)	C(18)	-3903(3)	1447(6)	3252(1)	59(1)
O(3)	-4238(2)	2646(4)	1320(1)	61(1)	C(19)	-3452(3)	1222(7)	1384(1)	50(1)
O(4)	-3624(2)	-507(4)	1143(1)	58(1)	C(20)	-4803(4)	-559(7)	775(1)	91(2)
C(2)	-842(3)	1044(5)	1596(1)	35(1)	H(6)	-250(20)	1260(50)	3138(8)	56(9)
C(3)	-2147(3)	1194(5)	1736(1)	27(1)	H(7)	2200(20)	1300(40)	3237(7)	55(9)
C(4)	-1988(3)	1273(5)	2234(1)	24(1)	H(8)	3380(20)	1270(50)	2556(8)	49(9)
C(5)	-574(3)	1252(5)	2407(1)	26(1)	H(12)	-1170(20)	4480(40)	1115(9)	67(10)
C(6)	239(3)	1250(5)	2864(1)	30(1)	H(13)	-2090(20)	6600(40)	492(8)	62(10)
C(7)	1644(3)	1267(6)	2918(1)	39(1)	H(15)	-1920(20)	1840(40)	-431(8)	64(10)
C(8)	2358(3)	1258(5)	2519(1)	35(1)	H(16)	-1020(20)	-230(40)	202(9)	68(10)
C(9)	1585(3)	1246(5)	2073(1)	35(1)	H(18A)	-3460(20)	1650(40)	3612(8)	59(10)
C(10)	-523(3)	564(5)	1115(1)	48(1)	H(18B)	-4410(30)	70(50)	3218(9)	83(12)
O(10)	94(2)	-1033(4)	1057(1)	63(1)	H(18C)	-4620(20)	2620(40)	3150(7)	36(9)
C(11)	-1099(3)	1927(6)	731(1)	42(1)	H(20A)	-4860(20)	-1960(40)	609(8)	60(10)
C(12)	-1355(3)	3934(5)	800(1)	45(1)	H(20B)	-4700(20)	570(40)	533(8)	59(10)
C(13)	-1876(4)	5207(6)	433(1)	67(2)	H(20C)	-5720(20)	-300(50)	917(8)	69(11)

Таблица 2. Позиционные параметры атомов (×10⁴) и их изотропные тепловые параметры $U_{_{3KB}}$ (Å² × 10³) для молекулы 2

Таблица 3. Позиционные параметры атомов (×10⁴) и их изотропные тепловые параметры $U_{_{3KB}}$ (Å²×10³) для молекулы 3

Атом	x	у	z	$U_{3 \mathrm{KB}} / U_{\mathrm{M30}}$	Атом	x	у	z	$U_{ m 3KB}/U_{ m H30}$
Cl(2)	8183(1)	7124(1)	2456(1)	71(1)	C(19)	7616(5)	1835(3)	-851(1)	45(1)
N(1)	7310(3)	5100(2)	-316(1)	33(1)	C(20)	9794(6)	143(3)	-930(2)	78(1)
C(2)	7676(4)	3821(2)	-208(1)	35(1)	O(1)	6997(3)	2793(2)	-2105(1)	71(1)
C(3)	7495(4)	3233(2)	-776(1)	35(1)	O(2)	6423(3)	4857(2)	-2251(1)	58(1)
C(4)	7071(4)	4123(3)	-1240(1)	36(1)	O(3)	6278(3)	1119(2)	-874(1)	59(1)
C(5)	6936(4)	5315(3)	-952(1)	36(1)	O(4)	9431(3)	1482(2)	876(1)	53(1)
C(6)	6504(4)	6541(3)	-1150(1)	43(1)	O(10)	8355(3)	2242(2)	524(1)	56(1)
C(7)	6432(4)	7477(3)	-716(1)	44(1)	H(6)	6180(30)	6660(20)	-1640(9)	46(8)
C(8)	6822(4)	7211(3)		44(1)	H(7)	6030(40)	8350(20)	-887(11)	68(10)
C(9)	7261(4)	6015(3)	128(1)	34(1)	H(8)	6680(30)	7740(20)	187(9)	27(8)
C(10)	8063(4)	3369(3)	416(1)	40(1)	H(13)	7460(30)	7400(20)	1150(9)	41(8)
C(11)	8064(4)	4332(3)	905(1)	37(1)	H(15)	8870(30)	4560(20)	2426(8)	32(7)
C(12)	7691(4)	5598(3)	767(1)	33(1)	H(16)	8810(30)	2960(20)	1579(9)	32(7)
C(13)	7717(4)	6461(3)	1256(1)	40(1)	H(18A)	5660(40)	5490(30)	-3072(13)	116(14)
C(14)	8107(4)	6042(3)	1854(1)	44(1)	H(18B)	4990(40)	3920(30)	-3024(13)	102(12)
C(15)	8473(4)	4778(3)	1995(1)	50(1)	H(18C)	7460(40)	4280(30)	-3004(12)	83(12)
C(16)	8453(4)	3918(3)	1515(1)	47(1)	H(20A)	10940(50)	70(40)	-859(17)	190(20)
C(17)	6844(4)	3835(3)	-1899(1)	46(1)	H(20B)	9350(40)	-330(20)	-1336(11)	70(10)
C(18)	6145(6)	4660(4)	-2921(1)	78(1)	H(20 <u>C</u>)	9200(40)	-400(30)	-606(12)	95(12)

КРИСТАЛЛОГРАФИЯ том 47 № 4 2002

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ

Связь	d (2)	<i>d</i> (3)	Связь	d (2)	d (3)
Cl(1)-C(9)	1.706(3)		C(10)-O(10)	1.239(4)	1.229(3)
Cl(2)-C(14)	1.732(4)	1.736(3)	C(10)C(11)	1.464(4)	1.473(4)
N(1)-C(9)	1.386(3)	1.370(3)	C(11)C(16)	1.412(4)	1.392(4)
N(1)-C(2)	1.402(3)	1.392(3)	C(11)-C(12)	1.376(5)	1.391(4)
N(1)-C(5)	1.399(3)	1.396(3)	C(12)-C(13)	1.380(5)	1.401(4)
C(2)-C(3)	1.378(4)	1.376(3)	C(13)-C(14)	1.378(5)	1.368(3)
C(2)-C(10)	1.484(4)	1.432(3)	C(14)-C(15)	1.393(5)	1.389(4)
C(3)-C(4)	1.406(4)	1.385(3)	C(15)C(16)	1.339(5)	1.385(4)
C(3)-C(19)	1.484(4)	1.492(4)	C(17)-O(1)	1.187(3)	1.200(3)
C(4)-C(5)	1.376(3)	1.416(4)	C(17)-O(2)	1.336(3)	1.337(3)
C(4)-C(17)	1.483(4)	1.456(3)	O(2)–C(18)	1.425(4)	1.460(3)
C(5)C(6)	1.413(3)	1.389(4)	C(19)-O(3)	1.208(5)	1.206(3)
C(6)-C(7)	1.339(4)	1.374(4)	C(19)–O(4)	1.336(5)	1.341(3)
C(7)-C(8)	1.416(4)	1.392(4)	O(4)–C(20)	1.425(4)	1.447(4)
C(8)C(9)	1.370(4)	1.370(4)	C(9)–C(12)		1.456(3)

Таблица 4.	Межатомные	расстояния d (A	() B	структурах 2 и 3
------------	------------	-----------------	------	------------------

Laojana 5. Hapamerph biyrph h Montekymphibix kontaktob b erpyktype	Таблица	5.	Параметрь	і внутри- и	и межмолекулярных	контактов в	структуре :
---	---------	----	-----------	-------------	-------------------	-------------	-------------

D-H	<i>d(D-</i> -H), Å	$d(D\cdots A),$ Å	$d(\mathbf{H}\cdots A), \mathbf{\mathring{A}}$	ω(<i>D</i> –H···A), град	A	Операция симметрии
C(6)-H(6)	0.97(3)	3.005(4)	2.45(2)	116(2)	O(2)	[x; y; z]
C(16)-H(16)	1.00(3)	2.860(4)	2.57(3)	97(2)	O(10)	[x; y; z]
C(7)-H(7)	0.98(2)	3.721(4)	2.96(3)	135(2)	O(4)	[-x; y + 1/2; 1/2 - z)
C(6)-H(6)	0.97(3)	3.622(4)	2.90(3)	132(2)	O(10)	[-x; y + 1/2; 1/2 - z)
C(8)-H(8)	0.98(2)	3.285(4)	2.36(2)	156(2)	O(1)	[x + 1; y; z]
C(13)-H(13)	0.97(3)	3.461(4)	2.91(2)	117(2)	O(10)	[x; y + 1; z]
C(15)-H(15)	1.00(2)	3.486(5)	2.74(3)	132(2)	O(10)	[-x; -y; -z]
C(18)-H(18B)	1.04(3)	3.426(4)	2.56(3)	141(2)	O(3)	[-x-1; y-1/2; 1/2-z]
C(18)-H(18C)	1.05(2)	3.694(4)	2.71(2)	157(2)	O(1)	[-x-1; y+1/2; 1/2-z)

Таблица 6. Параметры внутри- и межмолекулярных контактов в структуре 3

D-H	<i>d</i> (<i>D</i> –H), Å	$d(D\cdots A), Å$	$d(\mathbf{H}\cdots A), \mathbf{\mathring{A}}$	ω(<i>D</i> -H…A), град	Α	Операция симметрии
C(6)-H(6)	1.07(2)	2.981(3)	2.35(2)	116(1)	O(2)	[x; y; z]
C(16)-H(16)	1.05(2)	2.786(3)	2.40(2)	100(1)	O(10)	[x; y; z]
C(7)-H(7)	1.02(2)	3.870(4)	2.94(2)	152(2)	O(3)	[x; y + 1; z]
C(8)-H(8)	0.83(2)	3.663(4)	2.97(2)	142(2)	O(3)	[1-x; 1-y; -z]
C(13)-H(13)	1.03(2)	3.143(4)	2.62(2)	111(1)	O(4)	[2-x; 1-y; -z]
C(18)-H(18A)	0.99(3)	3.324(4)	2.60(3)	130(2)	O(3)	[1-x; 1/2 + y; -z - 1/2]
C(20)-H(20C)	1.04(3)	2.927(4)	2.59(3)	98(2)	O(10)	[2-x; -y; -z]

тры для соединений 2 и 3 представлены в табл. 2 и 3 соответственно. Пространственное расположение атомов в молекулах 2 и 3, их нумерация показаны на рис. 1 и 2, полученных с использованием программы PLUTON96 [19], причем для удобства сравнения геометрических параметров молекул использована единая сходная нумерация атомов. Межатомные расстояния и контакты в структурах 2 и 3 вычислены по программе PARST95 [20] и систематизированы в табл. 4–6.

КРИСТАЛЛОГРАФИЯ том 47 № 4 2002

Рис. 1. Нумерация атомов и строение молекулы соединения 2.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Обнаруженное превращение соли пиридиния в индолизин представляет собой пример 1,3-диполярного циклоприсоединения, характерного для илидов N-фенацилпиридиния типа 4*a*. Осо-

Рис. 2. Нумерация атомов и строение молекулы соединения 3.

бенность найденной реакции заключается в том, что циклоприсоединение ацетиленового диенофила протекает региоселективно через образование аддукта 4b (с последующим окислением в индолизин 2):

Альтернативное циклоприсоединение с образованием циклоаддукта 4*c* с необходимостью повлекло бы ароматизацию такой структуры в индолизин 4*d*. Как показали специальные эксперименты (встречный синтез индолизина 4*d* и сравнение его хроматографического поведения с поведением микропримесей, образующихся в реакционной смеси) образования даже следовых количеств индолизина 4*d* не происходит.

В структуре гетероцикла 2 бицикл индолизина плоский (отклонения атомов от среднеквадратичной плоскости не превышает 0.06 Å). Плоскости индолизинового ядра молекулы и фенильного кольца бензоильной группы образуют двугранный угол 75.1(1)°. Атом O(10) отклоняется от плоскости фенильного цикла на 0.366(6) Å, а от плоскости бицикла индолизина на 1.372(5) Å. Плоские (отклонения атомов от среднеквадратичных плоскостей не превышают 0.1 Å в каждой) сложноэфирные радикалы C(17)O(1)O(2)C(18) и C(19)O(3)O(4)C(20) образуют с 9-членным бициклом двугранные углы 7.0(1)° и 66.8(1)° соответственно. Ранее нами была исследована кристаллическая структура диметилового эфира 3-(*n*-нитробензоил)-5-хлориндолизин-1,2-дикарбоновой кислоты $C_{19}H_{13}Cl_1N_2O_7$ [21]. Близость структурных фрагментов указанных соединений позволяет провести сравнение геометрических характеристик этих молекул. В сравниваемых молекулах торсионные углы O(1)C(17)C(4)C(3) сложноэфирной группы C(17)O(1)O(2)C(18) имеют значения +5.3(6)° (2) и –176.2(2)° в [21], а торсионные углы O(3)C(19)C(3)C(4) сложноэфирной группы C(19)O(3)O(4)C(20) имеют значения +66.0(6)° (2) и –98.3(3)° в *n*-нитропроизводном [21]. Такая переориентация сложноэфирных фрагментов происходит без изменения их линейных геометрических характеристик, т.е. длины связей и валентные углы в них равны с точностью до стандартных отклонений. Эта же тенденция сохраняется и для всей молекулы в целом. Тетрациклический продукт 3 образуется из индолизина 2 за счет образования связи С–С между бензоильной группой и пиридиновым фрагментом индолизина и последующего дегидрогалогенирования. Механизм этого превращения несколько необычен, хотя можно ожидать, что атом хлора в α-положении к пиридиновому фрагменту обладает достаточной подвижностью, тем не менее трудно допустить, что атом хлора будет замещаться бензоильным фрагментом по механизму ароматического нуклеофильного замещения (очевидно, что бензоильная группа в *орто*-положении нуклеофильностью не обладает). Следовательно, маловероятно, чтобы механизм реакции включал образование интермедиата 5*a*:

Единственным рациональным объяснением механизма обнаруженной циклизации является следующая гипотеза. Индолизин 2 подвергается циклизации либо под действием Al₂O₃, либо (как показали специальные эксперименты) под действием кислот. Кислоты (а также кислые ОН-группы оксида алюминия) вызывают протонирование бензоильной группы индолизина 2 с образованием катиона 5b (см. схему). Такое направление протонирования З-ацилиндолизинов хорошо известно [22]. В этом случае в скелете индолизина и примыкающем бензоильном фрагменте реализуется единая сопряженная система из 11 атомов, содержащая в целом 10л-электронов (выделена жирным цветом в интермедиате 5с). Очевидно, что 10-электронная система может подвергнуться перициклической реакции циклизации, разрешенной правилами Вудварда-Гоффмана. Продуктом такой необычной 1,11-циклизации (после отщепления HCI) будет являться именно тетрацикл 3.

Тетрацикл 3 образует плоскую систему из 19 атомов, включая C(17) и C(19) (см. рис. 2), среднеквадратичное отклонение атомов от нес не превышает 0.036(3) Å. Сложноэфирные радикалы также плоскис (среднеквадратичное отклонение атомов не превышают 0.003 Å в каждой) и в отличие от 2 расположены принципиально другим способом: группа C(17)O(1)O(2)C(18) лежит практически в плоскости гетероциклической системы, образуя с ней двугранный угол 0.68(7)°, а группа C(19)O(3)O(4)C(20) разворачивается почти перпендикулярно к ней, образуя двугранный угол 88.13(9)°. Такое расположение сложноэфирных групп по отношению к гетероциклическому ядру молекулы обусловлено минимальным отталкиванием атомов кислорода O(10) и O(1) с O(3) и O(4).

Кроме того, в молскулах 2 и 3 обнаружены внутримолекулярные водородные связи C(6)-H(6)…O(2) и C(16)-H(16)…O(10), имеющие практически одинаковые параметры (табл. 5 и 6). Что касается межмолекулярных контактов с участием атомов С, H и O, то параметры таких взаимодействий систематизированы в тех же таблицах.

Российскому фонду фундаментальных исследований авторы выражают благодарность за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (грант № 99-07-90133) и частичное финансирование синтетических работ (грант № 99-03-33076).

СПИСОК ЛИТЕРАТУРЫ

- Бабаев Е.В., Ефимов А.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1998. № 7. С. 983.
- Babaev E.V., Bozhenko S.V., Maiboroda D.A. et al. // Bull. Soc. Chim. Belg. 1997. V. 106(11). P. 631.
- Zhukov S.G., Rybakov V.B., Babaev E.V. et al. // Acta Cryst. C. 1997, V. 53. P. 1909.

- Бабаев Е.В., Боженко С.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1997. № 8. С. 1105.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. № 6. С. 1067.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 1. С. 108.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 2. С. 292.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В., Зонневельд Э. // Кристаллография. 2001. Т. 46. № 3. С. 435.
- 9. Бабаев Е.В., Рыбаков В.Б., Жуков С.Г., Орлова И.А. // Химия гетероцикл. соединений. 1999. № 4. С. 542.
- Zhukov S.G., Babaev E.V., Chernyshev V.V. et al. // Z. Kristallogr. 2000. B. 215. S. 306.
- Рыбаков В.Б., Жуков С.Г., Пасичниченко К.Ю., Бабаев Е.В. // Координац. химия. 2000. Т. 26. № 9. С. 714.
- 12. Рыбаков В.Б., Троянов С.И., Бабаев Е.В. и др. // Кристаллография. 2001. Т. 46. № 5. С. 843.

- 13. Рыбаков В.Б., Бабаев Е.В. // Кристаллография. 2002. Т. 47. № 1. С. 76.
- 14. Рыбаков В.Б., Бабаев Е.В. // Кристаллография. 2002. Т. 47. № 3. С. 00.
- 15. Allen F.H., Kennard O. // Chem. Des. Automat. News. 1993. V. 8. № 1. P. 31.
- Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands, 1989.
- Farrugia LJ. WinGX98. X-Ray Crystallographic Programs for Windows. University of Glasgow, U. K., 1998.
- Sheldrick G.M. SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- 19. Spek A.L. PLUTON96. Molecular Graphics Program. University of Utrecht, The Netherlands, 1996.
- 20. Nardelli M. // J. Appl. Cryst. 1995. V. 28. P. 659.
- Бабаев Е.В., Пасичниченко К.Ю., Рыбаков В.Б., Жуков С.Г. // Химия гетероцикл. соединений. 2000. № 10. С. 1378.
- Бабаев Е.В., Торочешников В.Н., Бобровский С.И. // Химия гетероцикл. соединений. 1995. № 9. С. 1235.