СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 7. СТРУКТУРНОЕ ИССЛЕДОВАНИЕ МЕТОДОМ РЕНТГЕНОВСКОЙ ДИФРАКЦИИ N-ПИРИДОНУКСУСНОЙ КИСЛОТЫ И ПРОДУКТА ЕЕ ВНУТРИМОЛЕКУЛЯРНОЙ ДЕГИДРАТАЦИИ

© 2002 г. В. Б. Рыбаков¹, Е. В. Бабаев, В. В. Чернышев

Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 25.07.2001 г.

Методом монокристальной дифракции определено строение пиридонуксусной кислоты $C_7H_7N_1O_3$. Кристаллы моноклинные: a = 7.4502(15), b = 10.006(6), c = 9.960(3) Å, $\beta = 109.96(2)^\circ$, Z = 4, пр. гр. $P2_1/c$. Структура решена прямыми методами и уточнена полноматричным МНК в анизотропном приближении до R = 0.0387. Строение продукта ее внутримолекулярной дегидратации $C_7H_6N_1O_2B_1F_4$ определено методом систематического поиска; уточнение проводилось методом Ритвельда ($R_p = 0.045$, $R_{wp} = 0.58$, $R_e = 0.026$, $\chi^2 = 4.69$). Кристаллы моноклинные: a = 10.4979(3), b = 11.4467(3), c = 7.6027(1) Å, $\beta = 100.83(2)^\circ$, Z = 4, пр. гр. $P2_1/n$. Система из двух сочлененных гетероциклов плоская.

ВВЕДЕНИЕ

Данная работа является продолжением проводимых нами структурных исследований гетероциклических соединений, обладающих способностью легко вступать в различные перегруппировки и реакции трансформации циклов [1–12]. Статья посвящена изучению строения пиридонуксусной кислоты $C_7H_7N_1O_3$ (I), а также продукта ее внутримолекулярной дегидратации (циклизации) 2-оксо-2,3-дигидрооксозоло[1,2-а]пиридиния тетрафторбората – C₇H₆N₁O₂B₁F₄ (II). Данные о строении указанных молекул в Кембриджском банке структурных данных [13] отсутствуют. Синтез пиридонуксусной кислоты I осуществляли алкилированием пиридона хлоруксусной кислотой в присутствии щелочи. Процесс циклизации пиридина I в соль оксазолопиридиния II осуществляли действием уксусного ангидрида с последующим осторожным добавлением тетрафторборной кислоты

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Параметры элементарной ячейки I C₇H₇NO₃ определяли и уточняли по 25 рефлексам в интервале углов 14° $\leq \theta \leq 16^{\circ}$ на автоматическом дифрактометре САД-4 [14] (λ Мо K_{α} , графитовый монохроматор). Кристаллы I моноклинные: a = 7.4502(15), b = 10.006(6), c = 9.960(3) Å, $\beta = 109.96(2)^{\circ}$, V = 697.9(5) Å³, $d_{\text{выч}} = 1.457$ г/см³, $\mu(\lambda$ Mo) = 0.116 мм⁻¹, Z = 4, пр. гр. $P2_1/c$. На том же дифрактометре при комнатной температуре методом ω -сканирования с кристалла размером не более $0.48 \times 0.48 \times 0.06$ мм в области углов $2.98^{\circ} \leq \theta \leq 28.97^{\circ}$ измерено 1745 отражений с $I \geq 2\sigma(I)$. Первичная обработка мас-

¹E-mail: rybakov@biocryst.phys.msu.su

сива дифракционных данных проводилась с использованием программы WinGX-98 [15]. Структура решена прямыми методами и уточнена МНК в анизотропном приближении по программному комплексу SHELX97 [16]. Все атомы молекулы водорода локализованы из разностного синтеза электронной плотности и уточнены в изотропном приближении. Окончательные значения $R_1 = 0.0387$ и $wR_2 = 0.0793$. Остаточная электронная плотность имела значения $\Delta \rho_{max} = 0.124$ и $\Delta \rho_{min} = -0.132$ э/Å³. Координаты атомов и их тепловые параметры приведены в табл. 1.

Дифракционный эксперимент для $C_7H_6N_1O_2B_1F_4$ (II) проводился при комнатной температуре на автоматическом порошковом ди-

Таблица 1. Позиционные параметры атомов (×10⁴) и их изотропные тепловые параметры (Å² × 10³) для молекулы I

Таблица 2.	Позиционные параметры атомов (×10 ⁴) и их
изотропные	е тепловые параметры (Å ²) для молекулы II

Атом	x	у	z	$U_{ m экв}/U_{ m изо}$
N(1)	6745(2)	1982(1)	502(1)	34(1)
C(2)	6691(2)	955(1)	1403(1)	34(1)
O(2)	5112(1)	701(1)	1553(1)	42(1)
C(3)	8427(2)	281(2)	2085(2)	46(1)
C(4)	10050(3)	636(2)	1854(2)	57(1)
C(5)	10030(3)	1702(2)	937(2)	61(1)
C(6)	8396(3)	2349(2)	288(2)	49(1)
C(7)	4980(2)	2696(2)	-217(2)	38(1)
C(8)	4411(2)	3690(1)	706(1)	33(1)
O(81)	2943(2)	4305(1)	226(1)	55(1)
O(82)	5628(2)	3828(1)	2001(1)	41(1)
H(3)	8440(20)	-421(19)	2727(19)	56(5)
H(4)	11190(30)	100(20)	2324(19)	63(5)
H(5)	11170(30)	1910(20)	760(20)	78(6)
H(6)	8190(30)	3100(20)	-370(20)	73(6)
H(7A)	3960(20)	2079(16)	-588(15)	38(4)
H(7 <i>B</i>)	5130(20)	3178(18)	-1010(20)	60(5)
H(82)	5090(30)	4480(20)	2460(20)	80(6)

Атом	x	у	z	Визо
N(1)	9(7)	2021(8)	8178(11)	1.56(7)
C(2)	1313(10)	1858(9)	8553(16)	1.56
C(3)	1830(8)	715(9)	8354(14)	1.56
C(4)	942(11)	-153(8)	7795(13)	1.56
C(5)	-401(10)	83(8)	7412(13)	1.56
C(6)	-883(10)	1182(10)	7607(14)	1.56
C(7)	-282(10)	3240(10)	8468(12)	1.56
C(8)	1095(12)	3721(7)	9063(14)	1.56
O(2)	2001(6)	2839(6)	9089(8)	1.56
O(8)	1417(6)	4710(5)	9476(8)	1.56
В	961(17)	3254(15)	3844(24)	3.7(5)
F(1)	1134(8)	4387(5)	3513(10)	2.78(8)
F(2)	966(9)	2664(5)	2345(7)	2.78
F(3)	1927(6)	2763(5)	4970(8)	2.78
F(4)	-101(6)	3003(6)	4395(9)	2.78
H(3)	2697(71)	596(66)	8610(82)	4.0
H(4)	1254(75)	-915(56)	7655(96)	4.0
H(5)	-991(77)	-543(60)	7033(85)	4.0
H(6)	-1779(70)	1333(71)	7369(96)	4.0
H(7A)	-786(69)	3358(66)	9425(90)	4.0
H(7 <i>B</i>)	-729(71)	3638(60)	7401(78)	4.0

фрактометре XRD-7 (Seifert-FPM, Freiburg) (λCuK_{α} Ni-фильтр) с шагом 0.02°. Соединение II весьма нестабильно и склонно к реакциям самоконденсации. Из-за высокой гигроскопичности и

нестабильности исследуемый порошок был помещен в кювету в "сухой" камере, заполненной аргоном, и изолирован от воздействия атмосферной влаги тонкой полиэфирной пленкой. Параметры

Рис. 1. Экспериментальный и разностный (уточнение по Ритвельду) спектры для соединения II.

Рис. 2. Нумерация атомов, межатомные расстояния и строение молекулы для соединения І.

Рис. 3. Нумерация атомов, межатомные расстояния и строение катиона для соединения II.

элементарной ячейки определены программой индицирования ITO [17] в интервале углов $12^{\circ} \le \le 20 \le 150^{\circ}$ и индексов $0 \le h \le 6$; $0 \le k \le 7$; $-5 \le l \le 5$. Пространственная группа определена по систематическим погасаниям отражений. Кристаллы II моноклинные: a = 10.4979(3), b = 11.4467(3), c = 7.6027(1) Å, $\beta = 100.83(3)^{\circ}$, V = 897.3(1) Å³, $d_{\text{выч}} = 1.6502$ г/см³, $\mu(\lambda \text{Cu}) = 15.369$ см⁻¹, Z = 4, пр. гр. $P2_1/n$.

Предварительная информация о структуре молекулы II получена на основе данных ЯМР-спектроскопии. Исходная геометрическая модель молекулы построена полуэмпирическими и эмпирическими методами с использованием программ MOPAC 6.0 [18] и PCMODEL [19]. Структура решена методом "систематического поиска" [20] с использованием заданных молекулярных фрагментов. Полнопрофильное уточнение структуры по методу Ритвельда проводилось программой MRIA [21]. В качестве функции профиля использовалась псевдо-Voight функция, фон аппроксимировался полиномами Чебышева 5-го порядка. Параметры текстуры в направлении [010] уточнялись по модели Марша–Долласа [22]. Тепловые параметры неводородных атомов молекулярного каркаса во время уточнения усреднялись.

КРИСТАЛЛОГРАФИЯ том 47 № 3 2002

D-H	d(D-H)	$d(D\cdots A)$	$d(\mathbf{H}\cdots \mathbf{A})$	ωDHA	A	Операция симметрии
C(7)–H(7A)	0.95(2)	2.643(2)	2.44(2)	92(1)	O(2)	(x, y, z)
C(3)–H(3)	0.95(2)	3.322(2)	2.60(2)	134(1)	O(81)	(1 - x, y - 1/2, 1/2 - z)
C(4)–H(4)	0.98(2)	3.315(2)	2.80(2)	114(1)	O(81)	(x + 1, 1/2 - y, z + 1/2)
C(4)–H(4)	0.98(2)	3.526(2)	2.57(2)	166(2)	O(82)	(2-x, y-1/2, 1/2-z)
C(5)–H(5)	0.95(2)	3.612(3)	2.87(2)	136(2)	O(81)	(x + 1, y, z)
C(6)–H(6)	0.97(2)	3.481(3)	2.75(2)	132(2)	O(81)	(1-x, 1-y, -z)
C(7)–H(7B)	0.96(2)	3.377(3)	2.87(2)	114(1)	O(81)	(1-x, 1-y, -z)
C(7)–H(7 <i>B</i>)	0.96(2)	3.626(2)	2.67(2)	172(2)	O(2)	(x, 1/2 - y, z - 1/2)
C(7)–H(7B)	0.96(2)	3.339(2)	2.93(2)	107(1)	O(82)	(x, 1/2 - y, z - 1/2)
O(82)-H(82)	0.96(2)	2.535(2)	1.61(2)	162(2)	O(2)	(1 - x, y + 1/2, 1/2 - z)

Таблица 3. Параметры межатомных контактов [24] в I

Примечание. D – атом-донор; A – атом-акцептор; H – атом водорода; (расстояния d – в Å, угол ω – в град).

D-H	d(D-H)	$d(D\cdots A)$	$d(\mathbf{H}\cdots \mathbf{A})$	ωDHA	A	Операция симметрии
C(7)–H(7B)	0.97(6)	3.15(1)	2.60(7)	116(4)	F(4)	(x, y, z)
C(6)–H(6)	0.94(7)	3.49(1)	2.88(7)	124(6)	O(8)	(x - 1/2, 1/2 - y, z - 1/2)
C(6)–H(6)	0.94(7)	3.33(1)	2.75(7)	121(5)	O(2)	(x - 1/2, 1/2 - y, z - 1/2)
C(6)-H(6)	0.94(7)	3.53(1)	2.63(8)	162(6)	F(1)	(x - 1/2, 1/2 - y, z + 1/2)
C(6)–H(6)	0.94(7)	3.40(1)	2.80(8)	122(6)	F(3)	(x - 1/2, 1/2 - y, z + 1/2)
C(7)–H(7A)	0.99(8)	3.53(1)	2.82(8)	129(5)	F(3)	(x - 1/2, 1/2 - y, z + 1/2)
C(5)–H(5)	0.96(7)	3.21(1)	2.47(7)	134(5)	F(2)	(-x, -y, 1-z)
C(4)–H(4)	0.95(7)	3.69(1)	2.98(7)	133(5)	F(4)	(-x, -y, 1-z)
C(3)-H(3)	0.91(7)	3.29(1)	2.87(7)	110(5)	O(8)	(1/2 - x, y - 1/2, 3/2 + z)
C(3)-H(3)	0.91(7)	3.26(1)	2.68(7)	123(5)	F(1)	(1/2 - x, y - 1/2, 3/2 + z)
C(4)–H(4)	0.95(7)	3.49(1)	2.81(7)	129(5)	F(3)	(1/2 - x, y - 1/2, 3/2 + z)
C(4)–H(4)	0.95(7)	3.63(1)	2.84(8)	142(5)	O(2)	(1/2 - x, y - 1/2, 3/2 + z)
C(3)-H(3)	0.91(7)	3.49(1)	2.78(7)	136(6)	F(4)	(x + 1/2, 1/2 - y, z + 1/2)
C(7)–H(7A)	0.99(8)	3.17(1)	2.50(8)	126(5)	O(8)	(-x, 1-y, 2-z)
C(7)–H(7A)	0.99(8)	3.06(1)	2.72(6)	101(4)	F(2)	(x, y, 1 + z)
C(7)–H(7 <i>B</i>)	0.97(6)	3.15(1)	2.38(7)	136(5)	F(1)	(-x, 1-y, 1-z)

Таблица 4. Параметры межатомных контактов* [23] в II

Примечание. D – атом-донор; A – атом-акцептор; H – атом водорода; (расстояния d – в Å, угол ω – в град).

Также были усреднены и тепловые параметры атомов фтора аниона. Окончательные параметры уточнения: $R_p = 0.045$, $R_{wp} = 0.58$, $R_e = 0.026$, $\chi^2 = 4.69$, где $R_p = \Sigma |I_o - I_c|/\Sigma I_o$, $R_{wp} = \Sigma w |I_o - I_c|/\Sigma w I_o$, $R_e = \Sigma \sigma I_o/\Sigma I_o$; I_o – наблюдаемая интенсивность; I_c – расчетная интенсивность. Экспериментальный рентгеновский и разностный спектры представлены на рис. 1. Координаты атомов и их изотропные тепловые параметры приведены в табл. 2.

Пространственное расположение атомов в молекулах I и II и их нумерация показаны на рис. 2 и 3, полученных с использованием графического пакета программ PLUTON96 [23].

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Ранее нами были структурно исследованы Nзамещенные пиридоны-2, содержащие фенацильную [3] и *пара*-нитрофенацильную группы у атома азота [8]. Строение пиридинового фрагмента молекулы I аналогично строению исследованных ранее пиридонов. Атомы O(2) и C(7) лежат в плоскости гетероцикла. В пиридиновом фрагменте наблюдается чередование длин формально простых и двойных связей (рис. 2) с образованием квазидиенового структурного фрагмента C(3)=C(4)-C(5)=C(6). Торсионный угол C(2)-N(1)-C(7)-C(8) равен 77.2(2)°, что исключает образование внутримолекулярной водородной свя-

КРИСТАЛЛОГРАФИЯ том 47 № 3 2002

476

зи O(2)…H(82)–O(82). Аналогичная картина наблюдалась нами и в случае 1,2-дигидро-2-имино-1-карбоксиметилпиридина [5], где плоскости карбоксильной группы и пиридинового цикла составляли двугранный угол 80.81(5)°.

В кристаллической структуре I обнаружено существование сети межмолекулярных водородных связей, параметры которых приведены в табл. 3.

Гетероциклический катион II имеет планарное строение; наибольшее отклонение атомов от плоскости бицикла составляет 0.01 А. Атом О(8) также лежит в этой плоскости. Интересно сопоставить структурные изменения при циклизации I - II. Как было отмечено выше, в молекуле І наблюдается отчетливое чередование длин связей в шестичленном цикле. В ходе циклизации длины связей в шестичленном фрагменте становятся менее контрастными (вследствие большей делокализации связей в катионе), хотя и сохраняют диеноподобную структуру. Вместе с тем карбонильный фрагмент аминогруппы теряет свою двоесвязность при циклизации, что, возможно, указывает на значительную локализацию заряда на атоме азота в катионе.

Отмеченная структурная особенность строения катиона II свидетельствует о том, что ароматизации бицикла при его образовании из моноцикла не происходит. В строении кристаллической структуры II отмечена система межмолекулярных контактов с участием атомов водорода, кислорода и фтора (табл. 4). Расчеты этих контактов проведены с использованием программы PARST-95 [23]. Средняя длина связи B–F в тетраэдрическом анионе составляет 1.321(19) Å.

Авторы признательны профессору института химии Берлинского университета им. Гумбольдта Э. Кемницу за любезно предоставленную возможность проведения порошкового дифрактометрического эксперимента, а также выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (грант № 99-07-90133) и поддержку работ по синтезу (грант № 99-03-33076). СПИСОК ЛИТЕРАТУРЫ

- 1. Бабаев Е.В., Ефимов А.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1998. № 7. С. 983.
- Babaev E.V., Bozhenko S.V., Maiboroda D.A. et al. // Bull. Soc. Chim. Belg. 1997. V. 106(11). P. 631.
- 3. Zhukov S.G., Rybakov V.B., Babaev E.V. et al. // Acta Cryst. C. 1997. V. 53. P. 1909.
- Бабаев Е.В., Боженко С.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1997. № 8. С. 1105.
- 5. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. С. 1067.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. С. 108.
- 7. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. С. 292.
- Бабаев Е.В., Рыбаков В.Б., Жуков С.Г., Орлова И.А. // Химия гетероцикл. соединений. 1999. № 4. С. 542.
- Zhukov S.G., Babaev E.V., Chernyshev V.V. et al. // Z. Kristallogr. 2000. B. 215. S. 306.
- Рыбаков В.Б., Жуков С.Г., Пасичниченко К.Ю., Бабаев Е.В. // Координац. химия. 2000. Т. 26. № 9. С. 714.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В., Зонневельд Э. // Кристаллография. 2001. Т. 46. № 3. С. 435.
- Рыбаков В.Б., Троянов С.И., Бабаев Е.В. и др. // Кристаллография. 2001. Т. 46. № 5. С. 843.
- 13. Allen F.H., Kennard O. // Chem. Design Automat. News. 1993. V. 8. № 1. P. 31.
- 14. Enraf-Nonius CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands, 1989.
- Farrugia L.J. WinGX98. X-Ray Crystallographic Programs for Windows. University of Glasgow, U.K., 1998.
- Sheldrick G.M. SHELX97. Program for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- 17. Visser J.W. // J. Appl. Cryst. 1969. V. 2. P. 89.
- Stewart J.J.P. MOPAC 6.0. QCPE Program № 455. Departement of Chemistry. Bloomington: Indiana University. USA, 1990.
- PCMODEL 7.0. Molecular Modelling Software for the Windows95/NT. Sarena Software. Bloomington. USA, 1999.
- Chernyshev V.V., Schenk Y. // Z. Kristallogr. 1998.
 B. 213. S. 1.
- 21. Zlokazov V.B., Chernyshev V.V. // J. Appl. Cryst. 1992. V. 25. P. 447.
- 22. Dollase W.A. // J. Appl. Cryst. 1986. V. 19. P. 267.
- 23. Spek A.L. PLUTON96. Molecular Graphics Program. Univ. of Utrecht. The Netherlands, 1996.
- 24. Nardelli M. // J. Appl. Cryst. 1995. V. 28. P. 659.

КРИСТАЛЛОГРАФИЯ том 47 № 3 2002