organic papers

Acta Crystallographica Section E Structure Reports Online

ISSN 1600-5368

Victor B. Rybakov,* Eugene V. Babaev and Eugene N. Belykh

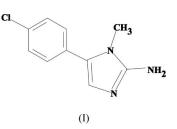
Chemistry Department, Moscow State University, 119899 Moscow, Russia

Correspondence e-mail: rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study T = 293 K Mean σ (C–C) = 0.004 Å R factor = 0.051 wR factor = 0.133 Data-to-parameter ratio = 12.9

For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.

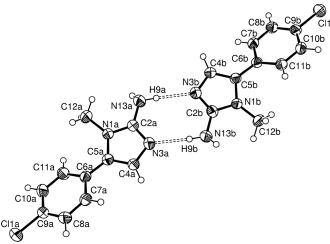

2-Amino-5-(4-chlorophenyl)-1-methylimidazole

The asymmetric unit of the title compound, $C_{10}H_{10}ClN_3$, contains four independent molecules, two of which are related by a pseudo-inversion centre. Intermolecular $N-H\cdots N$ and $N-H\cdots Cl$ interactions are present in the crystal.

Received 10 October 2001 Accepted 3 January 2002 Online 11 January 2002

Comment

According to the Cambridge Structural Database (Allen & Kennard, 1993) and to the best of our knowledge, the X-ray structure of the title compound, (I), has not been determined previously. The present analysis showed that four independent molecules are present in the asymmetric unit (molecules A, B, C and D). The planar phenyl ring (C6–C11) is twisted about the C5–C6 bond with respect to the planar imidazole moiety (N1–C5) by 22.8 (1), 29.8 (1), 28.9 (1) and 29.3 (1)° for molecules A-D, respectively. The main structural features of these four molecules are essentially identical, as shown in Table 1.


There are four endocyclic C–N bonds of the imidazole ring and one exocyclic C–N bond involving an amino group. As might be expected, the shortest C–N bond is the endocyclic C2=N3 double bond [mean 1.319 (3) Å], whereas the other C–N bond lengths follow the order C2–N1 [mean 1.359 (3)] < C2–N13 [mean 1.367 (3)] < C4–N3 [mean 1.377 (3)] < C5–N1 [mean 1.402 (3) Å]. A reason why the C2–N1 and C2–N13 single bonds are shorter than the other C–N bonds is the possibility of conjugation between the lone pairs of atoms N1 and N13 and the C2=N3 double bond.

Although amino–imino tautomerism is possible for α aminoheterocycles, X-ray data confirm the amine form of the present structure.

A system of intermolecular $N-H\cdots N$ and $N-H\cdots Cl$ contacts is formed in the crystal (Table 2). The hydrogen bonds $N13C-H10C\cdots N3C^{iii}$ (molecule *C*) and $N13D-H10D\cdots N3D^{iv}$ (molecule *D*) [symmetry codes: (iii) 1-x, 1-y, 1-z; (iv) 1-x, 2-y, 2-z] link molecules *C* or *D* in the crystal into centrosymmetric dimers, whereas molecules *A* and *B* are linked by similar $N-H\cdots N$ bonds to form a pseudocentrosymmetric dimer (Fig. 1). Moreover, molecules *C* and *D* form endless chains, as shown in Fig. 2 and Table 2. Molecules

© 2002 International Union of Crystallography Printed in Great Britain – all rights reserved

0126

Figure 1

View of the pseudocentrosymmetric dimer of mol atomic numbering scheme. Displacement ellipsoid probability level and H atoms are shown as sm radii.

A and B display similar packing, forming long $H \cdot \cdot \cdot Cl$ contacts, as shown in Table 2

Experimental

The title compound was prepared according Babaev & Belykh (2001). A single crystal of attempting to perform alkylation of the title bromide. In a single experiment, 0.2 g of 2 chlorophenyl)imidazole was refluxed with MeCN for 3 h. After cooling the reaction min crystals were of the unchanged aminoimidazo

Crystal data

$C_{10}H_{10}CIN_3$	Z = 8
$M_r = 207.66$	$D_x = 1.401 \text{ Mg m}^{-3}$
Triclinic, $P\overline{1}$	Mo $K\alpha$ radiation
a = 10.552 (5) Å	Cell parameters from 25
b = 12.833 (5) Å	reflections
c = 15.432 (11) Å	$\theta = 16.0 - 17.0^{\circ}$
$\alpha = 95.53(2)^{\circ}$	$\mu = 0.35 \text{ mm}^{-1}$
$\beta = 106.57 (2)^{\circ}$	T = 293 (2) K
$\gamma = 97.02 \ (2)^{\circ}$	Prism, colourless
$V = 1969.0 (18) \text{ Å}^3$	$0.3 \times 0.3 \times 0.3$ mm
Data collection	
Enraf-Nonius CAD-4	$\theta_{\rm max} = 27.0^{\circ}$
diffractometer	$h = -13 \rightarrow 12$
ω scans	$k = -16 \rightarrow 16$
Absorption correction: none	$l = 0 \rightarrow 19$
8918 measured reflections	2 standard reflections
8591 independent reflections	every 200 reflections
5153 reflections with $I > 2\sigma(I)$	frequency: 120 min
$R_{\rm int} = 0.017$	intensity decay: none
Refinement	
Refinement on F^2	$w = 1/[\sigma^2(F_o^2) + (0.0575P)^2]$
$R[F^2 > 2\sigma(F^2)] = 0.051$	+ 0.5308P]
$wR(F^2) = 0.133$	where $P = (F_o^2 + 2F_c^2)/3$
S = 1.01	$(\Delta/\sigma)_{\rm max} = 0.047$
9501 moffeetiens	$h_{0} = 0.27 \circ h^{-3}$

$wR(F^2) =$	0.133
S = 1.01	
8591 reflec	tions
666 param	eters
All H-ator	n parameters refined
	-

6	N1A - C12A	1.461 (3)	N10
C5b	C2A - N3A	1.323 (3)	C20
N1b	C2A-N13A	1.367 (3)	C20
	N3A - C4A	1.375 (3)	N3
	C4A - C5A	1.360 (3)	C40
13b JC12b	C5A - C6A	1.447 (3)	C50
0	C6A - C11A	1.398 (3)	C60
	C6A - C7A	1.398 (3)	C60
	C7A - C8A	1.373 (4)	C70
	C8A - C9A	1.374 (4)	C80
	C9A - C10A	1.374 (4)	C90
	C10A - C11A	1.384(4)	C10
	Cl1B-C9B	1.737 (3)	Cl1
	N1B-C2B	1.360 (3)	N1.
	N1B-C5B	1.402 (3)	N1
	N1B-C12B	1.450 (3)	N1.
	C2B-N3B	1.319 (3)	C2I
plecules A and B with the	C2B-N13B	1.371 (3)	C21
ids are drawn at the 50%	N3B-C4B	1.376 (3)	N3.
nall spheres of arbitrary	C4B-C5B	1.363 (3)	C41
	C5B-C6B	1.457 (3)	C51
	C6B-C11B	1.395 (3)	C61
	C6B-C7B	1.399 (3)	C61
g endless chains with	C7B-C8B	1.378 (4)	C71
	C8B-C9B	1.379 (4)	C81
2.	C9B-C10B	1.384 (4)	C91
	C10B-C11B	1.383 (4)	C10
	C2A-N1A-C5A	107.06 (19)	C20
g to the procedure of	C2A - N1A - C12A	122.8 (2)	C20
(I) was obtained while	C5A - N1A - C12A	128.7 (2)	C50
	N3A - C2A - N1A	112.2 (2)	N30
e compound with ethyl	N3A - C2A - N13A	125.0 (2)	N30
2-amino-1-methyl-5-(4–	N1A - C2A - N13A	122.7 (2)	N10
excess EtBr in 10 ml	C2A - N3A - C4A	104.3 (2)	C20
	C5A - C4A - N3A	112.4 (2)	C50
ixture, the precipitated	C4A - C5A - N1A	104.1 (2)	C40
ole.	C4A - C5A - C6A	129.6 (2)	C40
	N1A - C5A - C6A	126.2 (2)	N10
	C11A - C6A - C7A	116.0 (2)	C11
	C11A - C6A - C5A	124.2 (2)	C11
1 Ma 3	C7A - C6A - C5A	119.7 (2)	C70
1 Mg m^{-3}	C8A - C7A - C6A	122.7 (2)	C80
adiation	C7A - C8A - C9A	119.2 (2)	C70
meters from 25	C10A-C9A-C8A	120.8 (2)	C80
ons	C10A - C9A - Cl1A	118.8 (2)	C80
17.0°	C8A - C9A - Cl1A	120.4 (2)	C10
mm^{-1}	C9A-C10A-C11A	119.2 (3)	C11
2) K	C10A-C11A-C6A	122.1 (2)	C10
lourless	C2B-N1B-C5B	106.56 (19)	C21
× 0.3 mm	C2B-N1B-C12B	124.0 (2)	C21
	C5B-N1B-C12B	129.3 (2)	C51
	N3B-C2B-N1B	112.7 (2)	N3.
.0°	N3B-C2B-N13B	124.9 (2)	N3.
	N1B-C2B-N13B	122.3 (2)	N1.

C10B-C11B-C6B

121.8 (2)

Table 1

Selected geometric parameters (Å, °).

Cl1A-C9A	1.740 (3)	Cl1C-C9C	1.740 (2)
N1A - C2A	1.360 (3)	N1C-C2C	1.356 (3)
N1A - C5A	1.400 (3)	N1C-C5C	1.404 (3)
N1A - C12A	1.461 (3)	N1C-C12C	1.455 (3)
C2A - N3A	1.323 (3)	C2C-N3C	1.316 (3)
C2A-N13A	1.367 (3)	C2C-N13C	1.366 (3)
		N3C - C4C	
N3A - C4A	1.375 (3)		1.382 (3)
C4A - C5A	1.360 (3)	C4C-C5C	1.358 (3)
C5A - C6A	1.447 (3)	C5C-C6C	1.454 (3)
C6A-C11A	1.398 (3)	C6C-C11C	1.396 (3)
C6A-C7A	1.398 (3)	C6C - C7C	1.407 (3)
C7A - C8A	1.373 (4)	C7C-C8C	1.375 (4)
C8A - C9A	1.374 (4)	C8C-C9C	1.375 (4)
C9A-C10A	1.374 (4)	C9C-C10C	1.388 (3)
C10A-C11A	1.384 (4)	C10C-C11C	1.380 (3)
Cl1B-C9B	1.737 (3)	Cl1D - C9D	1.738 (2)
N1B-C2B	1.360 (3)	N1D - C2D	1.359 (3)
N1B-C5B	1.402 (3)	N1D - C5D	1.402 (3)
N1B-C12B	1.450 (3)	N1D - C12D	1.454 (3)
C2B-N3B	1.319 (3)	C2D-N3D	1.317 (3)
C2B-N13B	1.371 (3)	C2D - N13D	1.365 (3)
N3B-C4B	1.376 (3)	N3D - C4D	1.376 (3)
C4B-C5B	1.363 (3)	C4D-C5D	1.360 (3)
C5B-C6B	1.457 (3)	C5D - C6D	1.457 (3)
C6B-C11B	1.395 (3)	C6D - C11D	1.397 (3)
C6B-C7B	1.399 (3)	C6D - C7D	1.401 (3)
C7B-C8B	1.378 (4)	C7D - C8D	1.373 (3)
C8B-C9B	1.379 (4)	C8D - C9D	1.380 (4)
C9B-C10B	1.384 (4)	C9D-C10D	1.384 (3)
C10B-C11B	1.383 (4)	C10D-C11D	1.380 (4)
C2A - N1A - C5A	107.06 (19)	C2C-N1C-C5C	106.64 (19)
C2A - N1A - C12A	122.8 (2)	C2C-N1C-C12C	123.5 (2)
C5A - N1A - C12A	128.7 (2)	C5C - N1C - C12C	128.4 (2)
N3A - C2A - N1A	112.2 (2)	N3C - C2C - N1C	112.7 (2)
N3A-C2A-N13A	125.0 (2)	N3C-C2C-N13C	124.5 (2)
N1A - C2A - N13A	122.7 (2)	N1C-C2C-N13C	122.8 (2)
C2A - N3A - C4A	104.3 (2)	C2C-N3C-C4C	104.3 (2)
C5A - C4A - N3A	112.4 (2)	C5C - C4C - N3C	111.9 (2)
C4A - C5A - N1A	104.1 (2)	C4C - C5C - N1C	104.4 (2)
C4A - C5A - C6A	129.6 (2)	C4C - C5C - C6C	129.6 (2)
N1A - C5A - C6A	126.2 (2)	N1C-C5C-C6C	125.5 (2)
C11A-C6A-C7A	116.0 (2)	C11C-C6C-C7C	117.1 (2)
C11A-C6A-C5A	124.2 (2)	C11C-C6C-C5C	123.7 (2)
C7A - C6A - C5A	119.7 (2)	C7C - C6C - C5C	119.1 (2)
C8A - C7A - C6A	122.7 (2)	C8C-C7C-C6C	121.6 (2)
C7A - C8A - C9A	119.2 (2)	C7C-C8C-C9C	119.6 (2)
C10A-C9A-C8A	120.8(2)	C8C-C9C-C10C	120.8 (2)
C10A - C9A - Cl1A	118.8 (2)	C8C-C9C-Cl1C	120.09 (19)
C8A - C9A - C11A	120.4 (2)	C10C - C9C - C11C	119.14 (19)
C9A-C10A-C11A	119.2 (3)	C11 <i>C</i> -C10 <i>C</i> -C9 <i>C</i>	119.2 (2)
C10A - C11A - C6A	122.1 (2)	C10C-C11C-C6C	121.7 (2)
C2B-N1B-C5B	106.56 (19)	C2D-N1D-C5D	106.24 (19)
C2B-N1B-C12B	124.0 (2)	C2D-N1D-C12D	123.7 (2)
C5B-N1B-C12B	129.3 (2)	C5D - N1D - C12D	127.9 (2)
N3B-C2B-N1B	112.7 (2)	N3D - C2D - N1D	112.8 (2)
N3B - C2B - N13B	124.9 (2)	N3D - C2D - N13D	124.9 (2)
N1B-C2B-N13B	122.3 (2)	N1D - C2D - N13D	122.2 (2)
C2B-N3B-C4B	104.3 (2)	C2D-N3D-C4D	104.4 (2)
C5B-C4B-N3B	112.0 (2)	C5D - C4D - N3D	111.8 (2)
C4B-C5B-N1B	104.4 (2)	C4D - C5D - N1D	104.8 (2)
C4B-C5B-C6B	129.5 (2)	C4D - C5D - C6D	129.4 (2)
N1B-C5B-C6B	126.0 (2)	N1D - C5D - C6D	125.4 (2)
C11B-C6B-C7B	117.0 (2)	C11D-C6D-C7D	117.2 (2)
C11B-C6B-C5B	123.9 (2)	C11D-C6D-C5D	123.2 (2)
C7B - C6B - C5B	119.1 (2)	C7D - C6D - C5D	119.5 (2)
C8B - C7B - C6B	122.0 (2)	C8D - C7D - C6D	121.8 (2)
C7B - C8B - C9B	119.2 (2)	C7D - C8D - C9D	119.4 (2)
C8B-C9B-C10B	120.8 (2)	C8D-C9D-C10D	120.6 (2)
C8B - C9B - Cl1B	120.02 (19)	C8D-C9D-Cl1D	119.71 (19)
C10B-C9B-Cl1B	119.2 (2)	C10D-C9D-Cl1D	119.7 (2)
C11B-C10B-C9B	119.2 (2)	C10D - C10D - C9D	119.4 (2)
C10B - C10B - C9B C10B - C11B - C6B	119.2(2) 1218(2)	C11D = C10D = C9D C10D = C11D = C6D	119.4(2) 1215(2)
	141.0171	モリリーモリリーモロリ	141.7171

 $\Delta \rho_{\rm max} = 0.27 \ {\rm e} \ {\rm \AA}^{-3}$

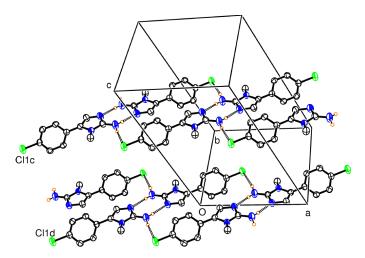
 $\Delta \rho_{\rm min} = -0.41 \text{ e } \text{\AA}^{-3}$

 $\mathrm{C10}D\!-\!\mathrm{C11}D\!-\!\mathrm{C6}D$

121.5 (2)

Table	2
-------	---

Hydrogen-bonding	geometry ([A, °).
------------------	------------	-------	----


$D - H \cdots A$	D-H	$H \cdot \cdot \cdot A$	$D \cdots A$	$D - H \cdots A$
$N13C - H10C \cdot \cdot \cdot N3C^{i}$	0.85 (3)	2.11 (3)	2.955 (3)	173 (3)
$N13D - H10D \cdot \cdot \cdot N3D^{ii}$	0.85 (3)	2.11 (3)	2.949 (3)	175 (3)
$N13A - H9A \cdots N3B^{iii}$	0.89 (3)	2.09 (3)	2.979 (4)	176 (2)
$N13B - H9B \cdot \cdot \cdot N3A^{iv}$	0.89 (3)	2.11 (3)	2.998 (3)	176 (3)
$N13C - H9C \cdots Cl1C^{iii}$	0.81 (4)	2.90 (4)	3.646 (3)	154 (3)
$N13D - H9D \cdots Cl1D^{iii}$	0.82 (3)	2.91 (4)	3.650 (3)	152 (3)
$N13A - H10A \cdots Cl1A^{iii}$	0.78 (3)	3.21 (3)	3.696 (3)	122 (3)
$N13B - H10B \cdot \cdot \cdot Cl1B^{iv}$	0.82(3)	3.11 (3)	3.729 (3)	134 (3)

Symmetry codes: (i) 1 - x, 1 - y, 1 - z; (ii) 1 - x, 2 - y, 2 - z; (iii) 1 + x, y, z; (iv) x - 1, y, z.

All H atoms were refined isotropically; the C–H distances were in the range 0.78 (3)–1.04 (3) Å.

Data collection: *CAD-4 Software* (Enraf–Nonius, 1989); cell refinement: *CAD-4 Software*; data reduction: *WinGX*98 (Farrugia, 1998) and *XCAD4* (Harms & Wocadlo, 1995); program(s) used to solve structure: *SHELXS*97 (Sheldrick, 1997); program(s) used to refine structure: *SHELXL*97 (Sheldrick, 1997); molecular graphics: *ORTEP-3* (Farrugia, 1998) and *ORTEP*III (Burnett & Johnson, 1996); software used to prepare material for publication: *SHELXL*97.

We acknowledge the support of the Russian Foundation for Basic Research in payment of the licence for using the Cambridge Structural Database (project No. 99-07-90133).

Figure 2

Part of the structure showing the formation of endless chains involving $N-H\cdots Cl$ hydrogen bonds. For the sake of clarity, H atoms not participating in the hydrogen bonding have been omitted, and no labels have been shown apart from those of the Cl atoms to differentiate the two chains formed by molecules *C* and *D*.

References

- Allen, F. H. & Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
- Babaev, E. V. & Belykh, E. N. (2001). Unpublished work.
- Burnett, M. N. & Johnson, C. K. (1996). ORTEPIII. Report ORNL-6895. Oak Ridge National Laboratory, Tennessee, USA.
- Enraf–Nonius (1989). CAD-4 Software. Version 5.0. Enraf–Nonius, Delft, The Netherlands.
- Farrugia, L. J. (1998). ORTEP-3 for Windows and WinGX98. University of Glasgow, Scotland.
- Harms, K. & Wocadlo, S. (1995). XCAD4. University of Marburg, Germany. Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.