Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

Victor B. Rybakov,* Eugene V. Babaev and Ylya V. Dlinnykh

Chemistry Department, Moscow State University, 119899 Moscow, Russia

Correspondence e-mail:
rybakov@biocryst.phys.msu.su

Key indicators

Single-crystal X-ray study
$T=293 \mathrm{~K}$
Mean $\sigma(\mathrm{C}-\mathrm{C})=0.005 \AA$
R factor $=0.047$
$w R$ factor $=0.117$
Data-to-parameter ratio $=9.7$
For details of how these key indicators were automatically derived from the article, see http://journals.iucr.org/e.
(C) 2001 International Union of Crystallography Printed in Great Britain - all rights reserved

N^{S}, N^{O}-Diphenyl(thiooxamide)

The molecule of the title compound, $\mathrm{PhNHC}(=\mathrm{S})$ $\mathrm{C}(=\mathrm{O}) \mathrm{NHPh}$ or $\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$, consists of two planar fragments, one of which includes the central $\mathrm{NHC}(=\mathrm{S})$ $\mathrm{C}(=\mathrm{O}) \mathrm{NH}$ chain together with the Ph substituent on the $\mathrm{C}=\mathrm{O}$ side; the second Ph ring, the one on the $\mathrm{C}=\mathrm{S}$ side, all by itself, makes up the second planar fragment. Its plane is twisted about the $\mathrm{N}-\mathrm{C}$ bond by 52.87 (9) ${ }^{\circ}$ with respect to the plane of the first fragment. The $\mathrm{C}=\mathrm{S}$ and $\mathrm{C}=\mathrm{O}$ double bonds adopt the transoid conformation with the torsion angle $\mathrm{S}=\mathrm{C}-\mathrm{C}=\mathrm{O}$ equal to $-179.6(2)^{\circ}$. The molecules in the crystal are linked into centrosymmetric dimers due to the N $\mathrm{H} \cdots \mathrm{O}$ hydrogen bond involving the thioamide NH group.

Comment

The molecular structure of the title compound is shown in Fig. 1. The molecule consists of two planar fragments: the C9-C14 phenyl ring makes up one of them and the C3-C8 phenyl ring together with the $\mathrm{N} 1-\mathrm{C} 1(\mathrm{O} 1)-\mathrm{C} 2(\mathrm{~S} 1)-\mathrm{N} 2$ chain atoms attached to C 3 forms the other one. The intermolecular hydrogen bond [$\mathrm{N} 2 \cdots \mathrm{O} 1^{1} 2.42$ (3) \AA, $\mathrm{N} 2 \cdots \mathrm{O} 1^{\mathrm{i}} 3.136$ (4) \AA and $\mathrm{N} 2-\mathrm{H} 2 \cdots \mathrm{O} 1^{\mathrm{i}} 148(3)^{\circ}$; symmetry code: (i) $1-x, 1-y$, $-z$] links the molecules in the crystal into centrosymmetric dimers. In the thiooxamide part of the molecule, the S and O atoms are trans with respect to each other; the

torsion angle $\mathrm{S} 1-\mathrm{C} 2-\mathrm{C} 1-\mathrm{O} 1$ is $-179.6(2)^{\circ}$. The conjugation between the thioamide and amide moieties of the molecule is weak, as the $\mathrm{C} 1-\mathrm{C} 2$ bond $[1.532(4) \AA$] is significantly longer than the standard $\mathrm{Csp}^{2}-\mathrm{Csp}{ }^{2}$ bond length in conjugated systems (1.46-1.48 £; Allen et al., 1987). The bond distances $\mathrm{C} 1=\mathrm{O} 1[1.231$ (3) A$]$ and $\mathrm{N} 1-\mathrm{C} 3[1.413$ (4) \AA A $]$ are longer than the standard bond lengths for $\mathrm{C}=\mathrm{O}(1.22 \AA)$ and $\mathrm{C}_{\mathrm{Ar}}-\mathrm{N} s p^{2}(1.36 \AA)$ (Allen et al., 1987). This effect may be explained by a weak delocalization of electron density in the amide group. The bond angle $\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3$ has an abnormal value of $131.5(3)^{\circ}$. This large bond angle may be explained by steric strain in the planar fragment $\mathrm{O} 1-\mathrm{C} 1-\mathrm{N} 1-\mathrm{C} 3-\mathrm{C} 4-$ H 4 . The second phenyl ring ($\mathrm{C} 9-\mathrm{C} 14$) is twisted about the $\mathrm{N} 2-\mathrm{C} 9$ bond with respect to the planar moiety $\mathrm{N} 2-\mathrm{C} 2(\mathrm{~S} 1)-$ $\mathrm{C} 1(\mathrm{O} 1)-\mathrm{N} 1-(\mathrm{C} 3-\mathrm{C} 8)$ by 52.87 (9) ${ }^{\circ}$. Due to this twisting, the $\mathrm{C} 2-\mathrm{N} 2-\mathrm{C} 9$ bond angle is not distorted and has a generally accepted value of $126.1(3)^{\circ}$. Only one related structure
(Krayushkin et al., 1996) (with n-butyl instead of phenyl as in our case) was found in the Cambridge Structural Database (Allen \& Kennard, 1993). The main structural features of this molecule are essentially identical with those of the title compound.

Experimental

A mixture of 0.5 g (2 mmol) 3-benzoxazolo[3,2-a]pyridinium-2-olate and 10 ml thionyl chloride $\left(\mathrm{SOCl}_{2}\right)$ was kept under reflux for 1 h . Thionyl chloride was evaporated and the precipitate obtained was washed with benzene ($3 \times 10 \mathrm{ml}$) and dissolved in dichloromethane $\mathrm{CH}_{2} \mathrm{Cl}_{2}(20 \mathrm{ml}) .0 .4 \mathrm{~g}(4.3 \mathrm{mmol})$ aniline $\left(\mathrm{C}_{6} \mathrm{H}_{7} \mathrm{~N}\right)$ was added to this solution. After heating at 313 K for 1 h and leaving to stand overnight at room temperature, the dichloromethane was evaporated, and the residue washed with water ($3 \times 20 \mathrm{ml}$) and recrystallized from a mixture of chloroform and diethyl ether (4:1). The yield was 0.2 g (37\%).

Crystal data

$\mathrm{C}_{14} \mathrm{H}_{12} \mathrm{~N}_{2} \mathrm{OS}$
$M_{r}=256.32$
Monoclinic, $P 2_{1} / c$
$a=4.026$ (5) \AA
$b=14.682$ (9) \AA
$c=20.728$ (12) \AA
$\beta=90.27$ (2) ${ }^{\circ}$
$V=1225.1(17) \AA^{3}$
$Z=4$
$D_{x}=1.390 \mathrm{Mg} \mathrm{m}^{-3}$
Mo $K \alpha$ radiation
Cell parameters from 25
\quad reflections
$\theta=13.0-15.0^{\circ}$
$\mu=0.25 \mathrm{~mm}^{-1}$
$T=293(2) \mathrm{K}$
Prism, yellow
$0.38 \times 0.12 \times 0.06 \mathrm{~mm}$

Data collection
Enraf-Nonius CAD-4 diffractometer

$$
\begin{aligned}
& h=-4 \rightarrow 4 \\
& k=0 \rightarrow 17
\end{aligned}
$$

ω scans
2089 measured reflections
2051 independent reflections
1287 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.070$
$\theta_{\text {max }}=25.0^{\circ}$

Refinement

Refinement on F^{2}
All H-atom parameters refined
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.047$
$w=1 /\left[\sigma^{2}\left(F_{o}{ }^{2}\right)+(0.0597 P)^{2}\right]$
where $P=\left(F_{o}{ }^{2}+2 F_{c}{ }^{2}\right) / 3$
$(\Delta / \sigma)_{\max }=0.048$
$\Delta \rho_{\text {max }}=0.20 \mathrm{e}^{-3}{ }^{-3}$
$\Delta \rho_{\text {min }}=-0.24 \mathrm{e}^{-3}$
$w R\left(F^{2}\right)=0.117$
$S=0.95$
2051 reflections
212 parameters

Figure 1
ORTEP-3 (Farrugia, 1998) view of the molecule of the title compound with the atom-numbering scheme. Displacement ellipsoids are drawn at the 30% probability level and H atoms are shown as small spheres of arbitrary radii.

Table 2
Hydrogen-bonding geometry $\left(\AA^{\circ},^{\circ}\right)$.

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
N1-H1 \cdots S1	$0.85(3)$	$2.38(3)$	$2.938(3)$	$124(3)$
N2-H2 \cdots O1	$0.81(3)$	$2.17(4)$	$2.632(4)$	$116(3)$
C4-H4 \cdots O1	$0.88(3)$	$2.45(3)$	$2.977(4)$	$119(3)$
N2-H2 O^{i}	$0.81(3)$	$2.42(3)$	$3.136(4)$	$148(3)$
C14-H14 \cdots S1	$0.93(3)$	$2.97(3)$	$3.250(4)$	$99(2)$

Symmetry code: (i) $1-x, 1-y,-z$.
All H atoms were refined isotropically; the $\mathrm{C}-\mathrm{H}$ bonds are in the range $0.82-1.00$ Å.

Data collection: CAD-4 Software (Enraf-Nonius, 1989); cell refinement: CAD-4 Software; data reduction: WinGX98 (Farrugia, 1998); program(s) used to solve structure: SHELXS97 (Sheldrick, 1997); program(s) used to refine structure: SHELXL97 (Sheldrick, 1997); molecular graphics: ORTEP-3 (Farrugia, 1998).

This work has been supported by the Russian Foundation for Basic Research (project No. 99-03-33076). We also acknowledge the support of this Foundation in payment of the licence for using the Cambridge Structural Database (project No. 99-07-90133).

References

Allen, F. H., Kennard, O., Watson, D. G., Brammer, L., Orpen, A. G. \& Taylor, R. (1987). J. Chem. Soc. Perkin Trans. 2, pp. S1-19.

Allen, F. H. \& Kennard, O. (1993). Chem. Des. Autom. News, 8, 1, 31-37.
Enraf-Nonius (1989). CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
Farrugia, L. J. (1998). ORTEP-3 for Windows and WinGX98. University of Glasgow, Scotland.
Krayushkin, M. M., Vorontsova, L. G., Kurella, M. G., Zavarzin, I. V. \& Yarovenko, V. N. (1996). Russ. Chem. Bull. 2, 485-487.
Sheldrick, G. M. (1997). SHELXS97 and SHELXL97. University of Göttingen, Germany.

