КРИСТАЛЛОГРАФИЯ, 2001, том 46, № 6, с. 1069–1071

СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 5. ДИФРАКТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ КРИСТАЛЛОВ ГИДРОХЛОРИДА 2-ГИДРОКСИ-3-ТРИФТОРАЦЕТИЛИМИДАЗО[1,2-*a*]ПИРИДИНА ПРИ 180 К

© 2001 г. В. Б. Рыбаков¹, С. И. Троянов, Е. В. Бабаев, О. С. Мазина, Л. А. Асланов

Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 23.11.2000 г.

Методом рентгеноструктурного анализа установлено строение гидрохлорида 2-гидрокси-3-трифторацетилимидазо[1,2-*a*]пиридина $C_9H_6F_3ClN_2O_2$ при 180 К. Структура решена прямыми методами и уточнена МНК до *R* = 0.0296. Одной из особенностей строения кристалла является образование системы водородных связей: N–H…Cl⁻ с параметрами N…Cl 3.09, N–H 0.83, H…Cl 2.33 Å, N–H…Cl 153° и O–H…Cl⁻ с параметрами O…Cl 2.87, O–H 0.95, H…Cl 1.92 Å, O–H…Cl 178°, причем атомы хлора связаны с исходным разными симметрическими преобразованиями.

ВВЕДЕНИЕ

Данная работа служит продолжением серии исследований гетероциклических соединений, которые обладают способностью вступать в реакции циклизации и трансформации циклов [1–8]. В одном из предыдущих сообщений [6] описано строение соли гидрохлорида 2-окси-2,3-дигидроимидазо[1,2-*a*]пиридина $C_7H_7CIN_2O$ (I), которая является исходным продуктом для получения гидрохлорида 2-гидрокси-3-трифторацетилимидазо[1,2-*a*]пиридина $C_9H_6F_3CIN_2O_2$ (II). Синтез II осуществлен обработкой I трифторуксусным ангидридом по реакции

В реакционном сосуде образовались бесцветные кристаллы призматического габитуса. При попытке извлечь кристаллы из маточного раствора последние полностью растрескивались в течение 30 с. Из-за высокой летучести трифторуксусного ангидрида работы по отбору кристаллов для целей рентгеноструктурного анализа проводились в струе охлажденного азота под бинокулярным микроскопом в поляризованном свете.

¹E-mail: rybakov@biocryst.phys.msu.su

Позиционные параметры атомов (×10⁴) и их эквивалентные изотропные тепловые параметры $U_{_{ЭКВ}}/U_{_{ИЗО}}$ (Å² × 10³) для молекулы II

Атом	x	у	z	$U_{ m экв}/U_{ m изо}$
Cl	4755(1)	1286(1)	1458(1)	31(1)
C(1)	3540(1)	4336(3)	2447(1)	20(1)
C(2)	3885(1)	6417(3)	2227(1)	20(1)
O(2)	3887(1)	7359(2)	1538(1)	25(1)
N(3)	4231(1)	7391(2)	2873(1)	21(1)
C(4)	4123(1)	6006(3)	3505(1)	21(1)
C(5)	4354(1)	6330(3)	4286(1)	26(1)
C(6)	4148(1)	4654(3)	4803(1)	30(1)
C(7)	3721(1)	2694(3)	4548(1)	31(1)
C(8)	3501(1)	2434(3)	3778(1)	26(1)
N(9)	3704(1)	4117(2)	3262(1)	20(1)
C(10)	3099(1)	2626(3)	2024(1)	22(1)
O(10)	2867(1)	733(2)	,2301(1)	31(1)
C(11)	2904(1)	3220(3)	1149(1)	26(1)
F(1)	2773(1)	5869(2)	1006(1)	34(1)
F(2)	2434(1)	1766(2)	885(1)	45(1)
F(3)	3305(1)	2518(2)	743(1)	35(1)
H(2)	4186(9)	8630(40)	1523(12)	49(5)
H(3)	4488(8)	8570(40)	2893(10)	37(5)
H(5)	4635(7)	7800(40)	4407(10)	31(4)
H(6)	4300(7)	4780(40)	5344(10)	36(4)
H(7)	3585(8)	1560(40)	4901(11)	37(4)
H(8)	3208(7)	1230(30)	3562(9)	29(4)
		10 C		

Строение гетероциклического катиона II.

По сведениям из Кембриджского банка структурных данных [9] рентгеноструктурный анализ II ранее не проводился.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы соединения II принадлежат к моноклинной сингонии. Параметры элементарной ячейки определены и уточнены по 1097 рефлексам в области углов θ 5°...25° на автоматическом дифрактометре IPDS (λ Mo K_{α} , графитовый монохроматор) при Т = 180(2) К: a = 23.761(5), b = 4.856(1), c = 17.713(4) Å, $\beta = 100.41(3)^\circ$, V = 2010.1(7) Å³, Z = 8, пр. гр. C2/c, $d_{\rm выч} = 1.762$ г/см³, $\mu(\lambda Mo) = 0.415$ мм⁻¹. На том же дифрактометре и при той же температуре методом ω-сканирования в области углов θ 3.16°...26.19° измерено 4505 отражений с *I*≥2σ(I). Обработка экспериментального набора дифракционных данных проводилась по комплексу программ X-RED-107. Координаты неводородных атомов были получены с использованием прямых методов и уточнены МНК в анизотропном приближении по программному комплексу SHELX97 [10]. Позиции всех атомов водорода были локализованы из разностного фурье-синтеза электронной плотности. Структура уточнена МНК в анизотропном (для атомов Н изотропном) приближении до R1 = 0.0296 (wR2 = 0.0642). Координаты атомов и их изотропные тепловые параметры, эквивалентные соответствующим анизотропным, представлены в таблице. Остаточная электронная плотность имеет значения $\Delta \rho_{max} = 0.240$ и $\Delta \rho_{min} = -0.184$ е/Å³. Изображение катиона (с нумерацией атомов) получено с использвоанием программы PLUTON96 [11] и показано на рисунке.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Противоионом в соединении II служит хлориданион. Гетероциклический катион имеет планарное строение; наибольшее отклонение атомов от плоскости бицикла составляет 0.015(1) Å. Структуру солей I и II в общем виде можно представить одной из трех структур (R = H или COCF₃):

Как мы установили ранее [6], структура соли I относится к типу A. Между тем структуру соли II (получаемой ацилированием I) следует однозначно отнести к типу B, а не к типу C. Об этом свидетельствует локализация протонов у атомов N(3) и O(2) и отсутствие протона у атома C(1).

Интересно сопоставить структурные изменения при ацилировании I — II. При сопоставлении длин связей в исследованных катионах можно заметить, что в шестичленном гетероцикле II квазидиеновый фрагмент C(5)C(6)C(7)C(8) становится более контрастным, чем в І. Протонирование экзоциклического атома О приводит к перераспределению длин связей в пятичленном цикле.

В частности, длина связи (C2)–O(2) увеличивается, а длина связи C(1)–C(2) уменьшается в соответствии с ожидаемым распределением длин связей в кетонном (I) и енольном (II) соединениях. Можно заключить, что введение группы COCF₃ к атому C(1) в кетонной форме A приводит к повышению кислотности оставшегося протона и стабилизации енольной формы B. Вместе с тем группа COCF₃, по-видимому, слабо сопряжена с енольным фрагментом в II, поскольку длина связи C(1)–C(10) (гетероцикл–ацил) достаточно велика (1.44 Å).

I (форма A)

II (форма $B, R = \text{COCF}_3$)

Еще одной особенностью строения II является образование системы водородных связей: из них $N(3)-H(3)-Cl^-$ с параметрами $N(3)-Cl^-$ 3.09, N(3)-H(3) 0.83, $H(3)-Cl^-$ 2.33 Å, $N(3)-H(3)-Cl^-$ 153°, причем атом хлора имеет симметричное преобразование (1 - x, 1 + y, 1/2 - z). Вторая $O(2)-H(2)-Cl^-$ с параметрами $O(2)-Cl^-$ 2.87, O(2)-H(2) 0.95, $H(2)-Cl^-$ 1.92 Å, $O(2)-H(2)-Cl^-$ 178°, а атом хлора имеет отличное от первого симметрическое преобразование (x, 1 + y, z).

Авторы признательны профессору института химии Берлинского университета им. Гумбольдта Э. Кемницу за любезно предоставленную возможность проведения дифрактометрического эксперимента, а также выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (грант № 99-07-90133) и поддержку синтетических исследований (грант № 99-03-33076).

СПИСОК ЛИТЕРАТУРЫ

- 1. Бабаев Е.В., Ефимов А.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1998. № 7. С. 983.
- Babaev E.V., Bozhenko S.V., Maiboroda D.A. et al. // Bull. Soc. Chim. Belg. 1997. V. 106(11). P. 631.
- 3. Zhukov S.G., Rybakov V.B., Babaev E.V. et al. // Acta Cryst. C. 1997. V. 53. P. 1909.
- Бабаев Е.В., Боженко С.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1997. № 8. С. 1105.
- 5. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. № 6. С. 1067.
- 6. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 1. С. 108.
- 7. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 2. С. 292.
- 8. *Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др.*// Кристаллография. 2001. Т. 46. № 3. С. 435.
- Allen F.H., Kennard O. // Chem. Des. Autom. News. 1993. V. 8. P. 31.
- Sheldrick G.M. SHELX97. Programs for the Solution and Refinement of the Crystal Structures. University of Göttingen, Germany, 1997.
- 11. Spek A.L. PLUTON96. Molecular Graphics Program. University of Utrecht, Netherlands, 1996.

КРИСТАЛЛОГРАФИЯ том 46 № 6 2001