СТРУКТУРА ОРГАНИЧЕСКИХ СОЕЛИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 4. ИССЛЕДОВАНИЕ СТРУКТУРЫ 3-(n-НИТРОБЕНЗОИЛ)-2-ОКСООКСАЗОЛО[3,2-a]ПИРИДИНА МЕТОДОМ ПОРОШКОВОЙ ДИФРАКЦИИ

© 2001 г. В. Б. Рыбаков, С. Г. Жуков, Е. В. Бабаев, Э. Зонневельд*

Московский государственный университет им. М.В. Ломоносова, химический факультет *Университет Амстердама, химический факультет, Нидерланды Поступила в редакцию 15.05.2000 г.

Структура 3-(n-нитробензоил)-2-оксооксазоло[3,2-a]пиридина определена методом порошковой дифракции. Кристаллы моноклинные, a=13.642(2), b=22.278(3), c=3.917(1) Å, $\beta=90.63(2)^\circ$, Z=4, пр. гр. $P2_1/n$. Структура решена модифицированным методом Монте-Карло, уточнение проводилось методом Ритвельда. В шестичленном гетероцикле наблюдается чередование длин частично простых и частично двойных связей. Система из двух сопряженных гетероциклов плоская. Плоскость фенильного кольца составляет с ней двугранный угол $46.1(1)^\circ$. Нитрогруппа лежит практически в плоскости фенильного фрагмента. В кристалле обнаружена разветвленная система как внутри-, так и межмолекулярных контактов с участием атомов водорода, кислорода и азота.

ВВЕДЕНИЕ

Данная статья продолжает цикл структурных исследований гетероциклических соединений, обладающих способностью легко вступать в реакции трансформации циклов и различных химических перегруппировок и является продолжением наших работ в этой области [1–7], а также исследования [8], где методом порощковой ренттенографии установлена структура мезоионного кристалла 3-бензоил-2-оксооксазоло[3,2-а]пиридина. Настоящая работа посвящена изучению строения его аналога 3-(n-нитробензоил)-2-оксооксазо-

ло[3,2-а]пиридина. Данные о строении указанного соединения в Кембриджском банке структурных данных [9] отсутствуют. Соединение получено описанным ранее методом [10].

Наш интерес к структуре и свойствам этого подкласса мезоионных гетероциклов связан, вопервых, с необычным — илидным — характером структуры таких гетероциклов [8], а во-вторых, с возможностью легкого раскрытия оксазолонового цикла и его трансформации в оксазолиевый [11] следующим образом:

Ранее нами методом рентгеноструктурного анализа были изучены соединения Π и Π ($R=C_6H_5$) [2, 3], т.е. оба продукта гидролиза мезоионной системы Π [2]. Таким образом, установление структуры соединения Π с Π = n-NO₂-C₆H₄ (Π), как предшественника соединений Π и Π , является еще одним примером принципа рентгеноструктурного картирования реакций [5–7].

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Дифракционный эксперимент проводился в вакуумированной камере Гинье-Йохансона FR552 Enraf-Nonius ($\lambda \text{Cu}K_{\alpha l}$, кварцевый монохроматор). Интенсивности рентгеновского спектра измерены на денситометре LS18 с шагом 0.01° в области углов 20.4° -86° и индексов $0 \le h \le 12$; $0 \le k \le 19, -3 \le l \le 3$. Параметры элементарной ячейки

Таблица 1. Координаты атомов ($\times 10^4$) и их изотронные тепловые параметры U_{reso} ($\mathring{\mathbf{A}}^2 \times 10^3$)

	-	1 430 (•	
Атом	x	у	z	$U_{ m {\tiny M3O}}$
C(1)	4146(10)	3112(6)	5472(15)	49(6)
C(2)	4264(10)	3699(6)	4050(15)	49(6)
C(3)	5684(10)	4169(6)	999(17)	49(6)
C(4)	6651(10)	4060(6)	-29(15)	51(7)
C(5)	7074(10)	3476(6)	731(15)	51(7)
C(6)	6639(10)	3018(6)	2317(15)	49(7)
C(7)	5644(10)	3155(6)	3446(15)	49(7)
C(8)	3666(10)	4217(6)	3267(15)	49(7)
C(9)	2604(10)	4109(6)	4369(15)	49(7)
C(10)	2131(10)	4565(6)	6060(15)	49(7)
C(11)	1106(10)	4525(6)	6786(15)	49(7)
C(12)	648(10)	4004(6)	5890(15)	49(7)
C(13)	1065(10)	3515(6)	4150(15)	49(7)
N(1)	5251(8)	3692(6)	2745(12)	49(7)
O(1)	5084(10)	2759(6)	5105(15)	49(7)
O(2)	3575(10)	2802(6)	6992(15)	49(7)
C(14)	2093(10)	3577(6)	3478(15)	49(7)
N(12)	-476(10)	3949(6)	6708(15)	49(7)
O(3)	3904(6)	4705(6)	2475(11)	△49(7)
O(12A)	-767(6)	4373(6)	8055(11)	109(11)
O(12B)	-782(6)	3474(5)	5695(15)	67(11)
H(3)	5338	4585	525	51*
H(4)	7048	4405	-1328	51*
H(5)	7855	3421	-169	51*
H(6)	6908	2571	2980	51*
H(10)	2526	4971	- 6841	51*
H(11)	740	4897 ar	8106	51*
H(13)	685	3107 · 🦠	3517	51*
H(14)	2457	3210	2242	51*

^{*} Тепловой параметр был зафиксирован и не уточнялся.

определены программой индицирования ITO [13], пространственная группа установлена по систематическим погасаниям отражений. Кристаллы Ia, $C_{14}H_8N_2O_5$ моноклинные: $a=13.642(2),\ b=22.278(3),\ c=3.917(1)$ Å, $\beta=90.63(2)^\circ,\ V=1190.4(4)$ ų, $d_{\text{выч}}=1.653$ г/см³, $\mu(\text{Cu})=10.8$ см⁻¹, Z=4; пр. гр. $P2_1/n$.

Структура решена модифицированным методом Монте-Карло [14, 15] с использованием известных молекулярных фрагментов. Полнопрофильное уточнение структуры методом Ритвельда проводилось по программе MRIA [16]. Для описания профилей рефлексов использовалась функция, предложенная в [17], фон антроксими-

ровался полиномами Чебышева 5-го порядка. Параметры текстуры уточнялись по модели Марча-Долласа [18] в направлении [001]. Подробнее методика структурного исследования Ia изложена в [19]. Окончательные R-факторы полноматричного уточнения составили: $R_p = 0.053$, $R_b = 0.055$, $R_e = 0.024$, критерий $\chi^2 = 6.9$, где $R_p = \sum |I_o - I_c| / \sum |I_o - Bckgr|$; $R_e = \sum \sigma I_o / \sum I_o$; $I_o -$ наблюдаемая интенсивность; $I_c -$ расчетная интенсивность.

Координаты атомов приведены в табл. 1 (позиции атомов Н рассчитаны из геометрических соображений и уточнялись в жесткой связке с соответствующими атомами углерода). Изображение молекулы получено с использованием программы PLUTON96 [20] и показано на рисунке, причем для удобства сопоставления геометрических фрагментов молекул (с приведенными в [8]) использована единая нумерация атомов.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Биядерный фрагмент молекулы Іа плоский и в основе имеет то же строение, что и в его структурном аналоге Ib ($R = C_6H_5$) [8], а именно: наблюдается альтернирование длин связей в шестичленном гетероцикле C(3)–C(4)–C(5)–C(6); длина эндоциклической связи C(1)-O(1) полностью совпадает в обеих структурах, в то время как О(1)-С(7) всего лишь на 0.05 Å больше. Такое строение свидетельствует о том, что шестичленный фрагмент молекулы мезоионного бицикла может быть представлен в большей степени пиридоноподобной структурой (с бутадиеновым строением), чем делокализованным пиридиновым циклом. Из структурных соображений вытекает, что положительный заряд распределяется по цепочке связей N(1)–C(7)–O(1) и делокализация не затрагивает пиридиновый фрагмент молекулы.

Связь C(1)—C(2), которая согласно приведенной выше схеме должна иметь характер двойной связи, в действительности существенно длиннее — 1.43(2) Å, в то время как экзоциклическая связь C(1)—O(2) по длине отвечает двойной связи 1.20(2) Å, так что геометрия фрагмента O(2)—C(1)—C(2)—C(8)—O(3) соответствует комбинации двух сочлененных карбонильных групп, присоединенных к атому C(2) без значительной делокализации. Этот факт может свидетельствовать о локализации отрицательного заряда на атоме C(2).

Существенное различие в строении сравниваемых молекул наблюдается в расположении фенильных колец по отношению к гетероциклическому ядру. Угол между плоскостями фенильного кольца и оксазоло[3,2-а]пиридинового бицикла

Нумерация атомов и строение исследованной модекулы.

составляет 66.8(2)° в молекуле Іb [8] и 46.1(2)° в молекуле Іа. Заметное уменьшение угла разворота циклов в исследованной молекуле, вероятнее всего, происходит за счет эффектов упаковки, обусловленных присутствием нитрогруппы в параположении фенильного фрагмента. Сама нитро-

группа лежит практически в плоскости фенильного кольца, угол ее разворота составляет $1(1)^{\circ}$.

В кристалле имеется система внутри- и межмолекулярных контактов типа С-H···О и С-H···N (табл. 2). Расчеты этих контактов проведены с использованием программы PARST95 [21].

Таблица 2. Параметры межатомных контактов* [19]

D-H	d(D-H)	d(D···A)	d(H···A)	ωДНА	А (симметрическая операция)
C(3)-H(3)	1.06(9)	2.77(2)	2.13(8)	117(6)	O(3) (x; y; z)
C(13)-H(13)	1.07(9)	2.60(2)	2.33(8)	92(5)	O(12B)(x; y; z)
C(11)-H(11)	1.10(8)	2.63(2)	2.36(8)	91(5)	O(12A)(x; y; z)
C(10)-H(10)	1.10(9)	2.83(1)	2.62(7)	89(4)	O(3)(x; y; z)
C(14)-H(14)	1.08(8)	2.98(2)	2.56(7)	103(5)	O(2)(x; y; z)
C(3)-H(3)	1.06(9)	2.91(2)	2.23(8)	120(5)	O(3) (1-x;1-y;-z)
C(4)-H(4)	1.07(8)	3.01(2)	2.41(9)	114(5)	O(3) (1-x;1-y;-z)
C(11)-H(11)	1.10(8)	3.13(2)	2.91(7)	91(4)	O(12A) (-x; 1-y; 1-z)
C(11)-H(11)	1.10(8)	3.22(2)	2.22(7)	150(5)	O(12A) (-x;1-y;2-z)
C(10)-H(10)	1.10(9)	3.48(1)	2.94(7)	111(4)	O(3)(x; y; 1+z)
C(14)-H(14)	1.08(8)	3.69(2)	2.73(7)	149(4)	O(2) (x; y; z - 1)
C(4)–H(4)	1.07(8)	3.68(2)	2.99(8)	122(5)	O(12A) (1 + x; y; z - 1)
C(5)–H(5)	1.13(8)	3.86(2)	2.85(8)	148(5)	N(12) (1 + x; y; z - 1)
C(5)-H(5)	1.13(8)	3.72(2)	2.92(9)	127(5)	O(12A) (1 + x; y; z-1)
C(5)-H(5)	1.13(8)	3.55(1)	2.48(7)	156(5)	O(12B) (1 + x; y; z - 1)
C(5)-H(5)	1.13(8)	3.49(1)	2.94(6)	110(4)	O(12B)(1+x; y; z)

^{*} D – атом-донор; A – атом-акцентор; H – атом водорода (расстояния d – в Å, угол ω – в град).

Работа выполнялась при поддержке Нидерландского общества фундаментальных исследований (NWO). Авторы выражают благодарность Российскому фонду фундаментальных исследований за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (грант № 99-07-90133) и финансирование синтетической части работ (грант № 99-03-33076).

СПИСОК ЛИТЕРАТУРЫ

- Бабаев Е.В., Ефимов А.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1998. № 7. С. 983.
- Babaev E.V., Bozhenko S.V., Maiboroda D.A. et al. // Bull. Soc. Chim, Belg. 1997. V. 106(11). P. 631.
- Zhukov S.G., Rybakov V.B., Babaev E.V. et al. // Acta Cryst. C. 1997. V. 53. P. 1909.
- Бабаев Е.В., Боженко С.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1997. № 8. С. 1105.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. № 6. С. 1067.
- Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 1. С. 108.

5 5 1/5 1/2

- 7. *Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др.* // Кристаллография. 2000. Т. 45. № 2. С. 292.
- 8. Zhukov S.G., Babaev E.V., Chernyshev V.V. et al. // Z. Kristallogr. 2000, B. 215, S. 306.
- 9. Allen F.H., Kennard O. // Chem. Design. Automation News. 1993. V. 8. № 1. P. 31.
- Boyd G.V., Wright P.H. // J. Chem. Soc. C. 1970.
 P. 1486.
- Бабаев Е.В., Орлова И.А. // Химия гетероцикл. соединений. 1997. № 4. С. 569.
- Бабаев Е.В., Рыбаков В.Б., Жуков С.Г., Орлова И.А. // Химия гетероцикл. соединений. 1999.
 № 4. С. 542.
- 13. Visser J.W. // J. Appl. Cryst. 1969. V. 2. P. 89.
- Harris K.D.M., Tremayne M., Lightfoot P., Bruce P.G. // J. Am. Chem. Soc. 1994. V. 116. P. 3543.
- Andreev Yu.G., Lightfoot P., Bruce P.G. // J. Appl. Cryst. 1997. V. 30. P. 294.
- Zlokazov V.B., Chernyshev V.V. // J. Appl. Cryst. 1992.
 V. 25. P. 447.
- 17. Toraya H. // J. Appl. Cryst. 1986. V. 19, P. 440.
- 18. Dollase W.A. // J. Appl. Cryst. 1986. V. 19. P. 267.
- 19. Zhukov S.G., Chennyshev V.V., Babaev E.V. et al. // Z. Kristallogr. 2001. B. 216. H. 1. S. 5.
- Spek A.L. PLUTON96. Molecular Graphics Program. University of Utrecht. Netherlands, 1996.
- 21. Nardelli M. // J. Appl. Cryst. 1995. V. 28. P. 659.

ista. Takan