Е. В. Бабаев, К. Ю. Пасичниченко, В. Б. Рыбаков, С. Г. Жуков

ГЕТЕРОЦИКЛЫ С МОСТИКОВЫМ АТОМОМ АЗОТА

14*. О ЦИКЛОПРИСОЕДИНЕНИИ ЭФИРА АЦЕТИЛЕНДИКАРБОНОВОЙ КИСЛОТЫ К ИЛИДУ 2-ХЛОР-N-ФЕНАЦИЛПИРИДИНИЯ. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА ДИМЕТИЛОВОГО ЭФИРА 3-(*n*-НИТРОБЕНЗОИЛ)-5-ХЛОРИНДОЛИЗИН-1,2-ДИКАРБОНОВОЙ КИСЛОТЫ*²

В реакции илида 2-хлор-1-(*n*-нитрофенацил)пиридиния с диметиловым эфиром ацетилендикарбоновой кислоты образуется производное 5-хлориндолизина, структура которого доказана методом РСА. По данным спектров ЯМР ¹Н и масс-спектров, полученный индолизин подвергается необычной внутримолекулярной циклизации с образованием ядра бенз[*e*]цикл-[3.3.2]азина.

Ключевые слова: бенз[е]цикл[3.3.2]азин, диметиловый эфир ацетилендикарбоновой кислоты, конденсированные гетероциклы: индолизин, пиридин, пиридиниевые илиды, пиррол, 5-хлориндолизин, 2-хлор-1-(*n*-нитрофенацил)пиридинийбромид, внутримолекулярная циклизация 3-ароил-5хлориндолизинов, 1,3-диполярное циклоприсоединение, рентгеноструктурный анализ.

Ранее нами обнаружены новые интересные превращения солей 2-галоген-N-фенацилпиридиния под действием роданида калия (с образованием производных 2-амино-3-ацилтиазоло[3,2-а]пиридиния [2]) и в реакции со вторичными аминами (с образованием оксазолилдиенов [3, 4]). В последнем случае объяснить механизм образования оксазольного ядра из пиридинового можно лишь предположив промежуточное образование пиридиниевого илида **A** (который претерпевает замыкание оксазольного кольца и раскрытие пиридинового цикла).

Аналогичный илид, по-видимому, является интермедиатом превращения солей 2-хлор-N-фенацилпиридиния в 1-нитроиндолизины под действием ю-нитростиролов [5]. В этой реакции генерируемые под действием оснований илиды А присоединяются по Михаэлю к активированным кратным связям с последующими внутримолекулярным замыканием пиррольного фрагмента и окислительной ароматизацией.

^{*} Сообщение 13 см. [1].

^{*&}lt;sup>2</sup> Посвящается памяти А. Н. Коста в связи с 85-летием со дня рождения.

Илиды типа A, генерируемые из солей 2-галогенпиридиния, могли бы вступать в реакции 1,3-диполярного циклоприсоединения. (Такие реакции илидов, получаемых из обычных солей N-фенацилпиридиния, широко используются в органическом синтезе [6].) Между тем, исследования в этой области ограничиваются единственной публикацией [7], где продемонстрирована возможность протекания циклоприсоединения для илида 2-бром-N-фенацилпиридиния.

Нами найдено, что в реакции соли 1-(*n*-нитрофенацил)-2-хлорпиридинийбромида (1а) с диметиловым эфиром ацетилендикарбоновой кислоты в присутствии триэтиламина образуется производное 3-ацил-5хлориндолизина 2а:

Структура индолизина **2a** доказана на основании спектральных данных (ЯМР ¹Н, масс-спектры) и рентгеноструктурного анализа (см. рис., табл. 1–3). По данным РСА, в молекуле **2a** сложноэфирная группа в положении 1 лежит в плоскости индолизинового бицикла, тогда как такая же группа в положении 2 повернута относительно этой плоскости на 84°. Карбонильный фрагмент бензоильной группы повернут на 56°, а фенильный фрагмент — на 35° относительно плоскости индолизина. Угол между нитрогруппой и фенильным кольцом составляет 13°.

Нумерация атомов и структура соединения 2а

Очевидно, механизм превращения c необходимостью что подразумевает образование илида типа А. Дальнейшее 1,3-диполярное циклоприсоединение с участием такого илида могло бы протекать двумя способами: через циклоаддукты В или С, приводя к индолизинам 2а или Как видно, реализуется атака диполярофила, 2b соответственно. приводящая к циклоаддукту В; последующая ароматизация молекулы в индолизин носит окислительный характер. При этом в реакционной смеси не образуется даже следов индолизина 2b, который получался бы за счет неокислительной ароматизации циклоаддукта С. (Для доказательства этого факта нами был осуществлен направленный синтез индолизина 2b циклоприсоединением к "обычному" пиридиниевому илиду, полученному ИЗ соли 1b. a выделенное вешество использовалось как хроматографический и спектральный стандарт.)

Производные подкласса 5-хлориндолизинов не были описаны. Сравнение ЯМР ¹Н спектров индолизинов **2а,b** показало, что атом хлора в положении 5 оказывет незначительное влияние на химические сдвиги протонов пиридинового фрагмента. Особенностью масс-спектрального поведения индолизина **2а** явился интенсивный пик [M-HCI]. Кроме того, очищенный методом TCX образец индолизина **2b**, по данным хроматомасс-спектрометрии, включал соединение, содержащее на одну молекулу HCl меньше, чем исходное вещество. Оказалось, что индолизин **2b** при 1380

Атом	x	У	Z	U_{eq}
Cl ₍₁₎	2066(2)	5672(1)	5206(1)	59(1)
N ₍₁₎	2269(4)	8331(3)	4743(2)	40(1)
C ₍₂₎	3042(5)	8347(3)	3672(2)	37(1)
C ₍₃₎	3659(5)	9591(3)	3298(2)	38(1)
C ₍₄₎	3260(5)	10365(3)	4121(3)	40(1)
C ₍₅₎	2389(5)	9573(3)	5024(3)	42(1)
C ₍₆₎	1658(5)	9805(5)	6075(3)	53(1)
C ₍₇₎	905(6)	8810(5)	6786(3)	61(1)
C ₍₈₎	951(5)	7532(5)	6521(3)	59(1)
C ₍₉₎	1682(5)	7287(4)	5517(3)	49(1)
C(10)	2762(5)	7410(3)	2995(2)	42(1)
O(10)	1230(4)	6973(3)	3064(2)	59(1)
C ₍₁₁₎	4403(5)	7075(3)	2145(2)	39(1)
C ₍₁₂₎	6297(5)	6967(3)	2310(3)	47(1)
C ₍₁₃₎	7823(6)	6720(3)	1499(3)	49(1)
C ₍₁₄₎	7387(5)	6585(3)	532(3)	46(1)
C(15)	5541(6)	6624(4)	364(3)	51(1)
C(16)	4044(6)	6860(3)	1176(3)	46(1)
C ₍₁₇₎	3520(5)	11774(4)	4075(3)	47(1)
O ₍₂₎	4104(4)	12334(2)	3073(2)	60(1)
$C_{(18)}$	4325(10)	13753(4)	2909(5)	76(2)
C ₍₁₉₎	4416(6)	10057(3)	2158(3)	44(1)
O ₍₃₎	3433(4)	10400(3)	1482(2)	68(1)
O ₍₄₎	6324(4)	9989(2)	1988(2)	51(1)
C ₍₂₀₎	7258(9)	10337(6)	903(4)	73(1)
N ₍₂₎	8964(6)	6442(3)	-367(3)	62(1)
O ₍₂₁₎	10544(5)	6689(4)	-307(3)	93(1)
O ₍₂₂₎	8627(5)	6073(3)	-151(2)	91(1)
H ₍₆₎	1748(50)	10700(37)	6208(27)	61(12)
H ₍₇₎	408(57)	9019(39)	7493(32)	82(13)
H ₍₈₎	579(52)	6772(39)	7087(30)	72(12)
H ₍₁₂₎	6568(52)	7047(34)	2991(28)	65(12)
H ₍₁₃₎	9193(57)	6629(36)	1603(28)	72(12)
H ₍₁₅₎	5225(45)	6480(31)	-335(26)	52(10)
H _(18A)	5230(88)	13982(60)	2067(50)	177(25)
H _(18B)	5029(72)	13924(48)	3406(39)	107(18)
H _(18C)	3166(77)	14236(52)	2897(40)	116(21)
H _(20A)	6592(81)	10024(54)	410(42)	138(23)
H _(20B)	7281(66)	11237(51)	777(36)	101(18)
H(20C)	8695(88)	10035(52)	926(40)	138(22)

Координаты атомов (×10⁴) и эквивалентные изотропные параметры (U_{eg}×10³) в исследованной структуре 2a

1381

Таблица 2

Длины связей (*l*) в молекуле 2a

Связь	<i>l,</i> Å	Связь	<i>l</i> , Å
Cl ₍₁₎ -C ₍₉₎	1.729(4)	C ₍₁₁₎ _C ₍₁₆₎	1.391(4)
N(1)-C(9)	1.382(4)	$C_{(11)} - C_{(12)}$	1.392(5)
$N_{(1)} - C_{(2)}$	1.392(4)	$C_{(12)} - C_{(13)}$	1.387(5)
$N_{(1)} - C_{(5)}$	1.394(4)	C(13)-C(14)	1.383(5)
$C_{(2)} - C_{(3)}$	1.380(4)	C(14)-C(15)	1.369(5)
C(2)-C(10)	1.465(4)	C ₍₁₄₎ -N ₍₂₎	1.468(4)
C ₍₃₎ -C ₍₄₎	1.398(4)	C(15)-C(16)	1.374(5)
C ₍₃₎ -C ₍₁₉₎	1.495(4)	C ₍₁₇₎ -O ₍₁₎	1.202(4)
C ₍₄₎ -C ₍₅₎	1.397(4)	C ₍₁₇₎ -O ₍₂₎	1.340(4)
C ₍₄₎ -C ₍₁₇₎	1.463(5)	O ₍₂₎ -C ₍₁₈₎	1.450(5)
C(5)-C(6)	1.411(5)	C ₍₁₉₎ -O ₍₃₎	1.197(4)
C ₍₆₎ -C ₍₇₎	1.346(5)	C ₍₁₉₎ -O ₍₄₎	1.329(4)
C ₍₇₎ -C ₍₈₎	1.397(6)	O ₍₄₎ -C ₍₂₀₎	1.446(5)
C ₍₈₎ -C ₍₉₎	1.358(5)	N ₍₂₎ -O ₍₂₁₎	1.211(5)
C(10)-O(10)	1.224(4)	N ₍₂₎ –O ₍₂₂₎	1.222(4)
$C_{(10)} - C_{(11)}$	1.489(4)	Annual Michael A	

Валентные углы (ω) в молекуле 2а

Таблица З

Угол	ω, град.	Угол	ω, град.
$C_{(9)} - N_{(1)} - C_{(2)}$	130.8(3)	$C_{(2)}-C_{(10)}-C_{(11)}$	116.7(3)
$C_{(9)} - N_{(1)} - C_{(5)}$	120.0(3)	$C_{(16)}-C_{(11)}-C_{(12)}$	119.5(3)
$C_{(2)} - N_{(1)} - C_{(5)}$	108.7(3)	$C_{(16)}-C_{(11)}-C_{(10)}$	119.7(3)
$C_{(3)} - C_{(2)} - N_{(1)}$	107.2(3)	$C_{(12)}-C_{(11)}-C_{(10)}$	120.8(3)
$C_{(3)} - C_{(2)} - C_{(10)}$	124.4(3)	$C_{(13)}-C_{(12)}-C_{(11)}$	120.6(4)
$N_{(1)} - C_{(2)} - C_{(10)}$	126.3(3)	$C_{(14)} - C_{(13)} - C_{(12)}$	117.6(4)
$C_{(2)} - C_{(3)} - C_{(4)}$	109.3(3)	$C_{(15)}-C_{(14)}-C_{(13)}$	122.9(3)
$C_{(2)} - C_{(3)} - C_{(19)}$	123.9(3)	$C_{(15)}-C_{(14)}-N_{(2)}$	118.2(4)
$C_{(4)} - C_{(3)} - C_{(19)}$	126.5(3)	$C_{(13)} - C_{(14)} - N_{(2)}$	118.8(4)
$C_{(3)} - C_{(4)} - C_{(5)}$	107.1(3)	$C_{(14)}-C_{(15)}-C_{(16)}$	118.8(4)
$C_{(3)} - C_{(4)} - C_{(17)}$	128.6(3)	$C_{(15)}-C_{(16)}-C_{(11)}$	120.4(4)
$C_{(5)} - C_{(4)} - C_{(17)}$	124.2(3)	$O_{(1)} - C_{(17)} - O_{(2)}$	123.6(3)
$N_{(1)} - C_{(5)} - C_{(4)}$	107.7(3)	$O_{(1)} - C_{(17)} - C_{(4)}$	125.7(4)
$N_{(1)} - C_{(5)} - C_{(6)}$	119.1(3)	$O_{(2)} - C_{(17)} - C_{(4)}$	110.7(3)
$C_{(4)} - C_{(5)} - C_{(6)}$	133.2(3)	$C_{(17)} - O_{(2)} - C_{(18)}$	116.4(3)
$C_{(7)} - C_{(6)} - C_{(5)}$	119.1(4)	$O_{(3)} - C_{(19)} - O_{(4)}$	124.7(3)
$C_{(6)} - C_{(7)} - C_{(8)}$	121.2(4)	$O_{(3)} - C_{(19)} - C_{(3)}$	124.2(3)
$C_{(8)} - C_{(9)} - N_{(1)}$	119.6(4)	$O_{(4)} - C_{(19)} - C_{(3)}$	111.1(3)
$C_{(8)} - C_{(9)} - Cl_{(1)}$	121.3(3)	$C_{(19)} - O_{(4)} - C_{(20)}$	116.9(4)
$N_{(1)} - C_{(9)} - Cl_{(1)}$	118.9(3)	$O_{(21)} - N_{(2)} - O_{(22)}$	122.4(4)
$O_{(10)}-C_{(10)}-C_{(2)}$	122.9(3)	$O_{(21)} - N_{(2)} - C_{(14)}$	119.3(4)
$O_{(10)} - C_{(10)} - C_{(11)}$	120.2(3)	$O_{(22)} - N_{(2)} - C_{(14)}$	118.3(4)

1382

длительном хранении (в сухом виде или в хлороформенном растворе), а также при действии оксида алюминия превращается в соединение, которому можно приписать тетрациклическую структуру 3:

Структуру соединения **3** подтверждают спектры ЯМР ¹Н. Механизм этой необычной циклизации послужит предметом отдельной публикации.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакция илида соли пиридиния 1а с диметиловым эфиром ацетилендикарбоновой кислоты. Суспендируют 0.106 г (0.3 ммоль) соли 1а в 4 мл ацетонитрила, добавляют 0.078 г (0.55 ммоль) диметилового эфира ацетилендикарбоновой кислоты и по каплям 0.06 г (0.6 ммоль) триэтиламина. После встряхивания смеси в течение 10 мин осадок растворяется, раствор приобретает красно-коричневый цвет. Смесь выдерживают 1 сут, упаривают, хроматографируют на пластинке с силикагелем (элюент этилацетат— петролейный эфир; первоначальное соотношение 1 : 1, затем 1 : 2, затем 1 : 1). Пластинку с веществом высушивают 12 ч, смывают вещество с сорбента этилацетатом. Выделяют 0.063 г (54%) индолизина 2а (17% после перекристаллизации из бензола). Т. пл. 178–180 °С. Спектр ЯМР ¹Н: (400 МГц, ДМСО-d₆), δ , м. д., J (Гц): 8.34 (3H, м, *p*-NO₂C₆H₄, 8-H); 8.15 (2H, м, *p*-NO₂C₆H₄); 7.50 (1H, д. д, 7-H); 7.31 (1H, д, $J_{67}^{=}$ 7.5, 6-H); 3.86 (3H, с, 1(2)-СООМе); 3.47 (3H, с, 2(1)-СООМе).

Диметиловый эфир 3-оксо-3H-6-нитробенз[е]цикл[3.3.2]азин-1,2-дикарбоновой кислоты (3). Растворяют 20 мг индолизина 2а при кипячении в 30 мл хлороформа, добавляют 0.5 г оксида алюминия (кислый, III ст. акт. по Брокману) и смесь оставляют в открытом сосуде. После испарения растворителя сухой остаток выдерживают 14 дн, контролируя окончательное исчезновение исходного индолизина методом TCX. Смесь промывают 20 мл хлороформа, полученный раствор упаривают. Выделяют 0.017 г (90%) циклазина 3. Т. пл. 353–355 °C. R_f полученного вещества 0.42 (силуфол, бензол—ацетон, 10 : 1). (Для сравнения, R_f исходного индолизина 0.24.) Спектр ЯМР ¹Н (400 МГц, CDCl₃), δ , м. д., J (Гц): 9.33 (1H, ш. с, H_A); 8.30 (1H, д. J_{BC} = 2.8, H_B); 8.20 (2H, м, 7-H, 8-H); 7.05 (1H, д. J_{BC} = 2.8, H_C); 6.93 (1H, д. J_{67} = 5, 6-H); 2.77 (3H, с, 1(2)-COOMe); 2.42 (3H, с, 2(1)-COOMe).

Синтез соли **1b** (выход 92 %, т. пл. 272–274 °С) и индолизина **2b** (выход 17 %, т. пл. 174–176 °С) описаны ранее [8]. Спектр ЯМР ¹Н индолизина **2b** (400 МГц, ДМСО-d₆), δ, м. д., *J* (Гц): 9.65 (1H, д. $J_{56} = 7, 5$ -H); 8.38 (3H, м, *p*-NO₂C₆H₄, 8-H); 7.83 (2H, м, *p*-NO₂C₆H₄); 7.67 (1H, д. д, 7-H); 7.34 (1H, д. д, 6-H); 3.84 (3H, с, 1(2)-СООМе); 3.30 (3H, с, 2(1)-СООМе).

Рентгеноструктурное исследование соединения 2а проведено на автоматическом монокристальном дифрактометре CAD-4 [9] на излучении λ МоК_{α}. Параметры элементарной ячейки определяли и уточняли в интервале 14–16° углов θ по 25 рефлексам (кристалл 0.3 × 0.12 × 0.12 мм). Кристаллы изученного соединения относятся к триклинной

сингонии (пространственная группа P(-1)) с параметрами a = 7.132(3), b = 10.172(2), c = 12.981(1) Å, $\alpha = 79.81(1)$, $\beta = 78.96(2)$, $\gamma = 81.02(2)^\circ$, V = 902.4(5)Å³, Z = 2. Первичная обработка дифракционных данных проводилась по комплексу программ WinGX-96 [10]. Структура решена прямыми методами по 3549 рефлексам лежащих в области углов θ 1-28° и уточнена полноматричным МНК по программному комплексу SHELX-97 [11] в анизотропном приближении для неводородных атомов. Координаты атомов водорода локализованы из разностного синтеза электронной плотности и уточнялись в изотропном приближений. Окончательный *R*-фактор имеет значение 0.0561 по 3414 независимым отражениям с $I > 2\sigma(I)$.

Позиционные параметры атомов в исследованном соединении и изотропные тепловые параметры, эквивалентные соответствующим анизотропным, приведены в табл. 1, межатомные расстояния и валентные углы в табл. 2 и 3. Пространственное расположение атомов в молекуле и их нумерация показаны на рисунке [12].

Работа выполнялась при поддержке РФФИ (грант 99-03-33076а). Авторы выражают благодарность РФФИ за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 99-07-90133).

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Бабаев, К. Ю. Пасичниченко, В. Б. Рыбаков, С. Г. Жуков, А. В. Ефимов, *XTC*, 1245 (2000).
- E. V. Babaev, A. A. Bush, I. A. Orlova, V. B. Rybakov, S. G. Zhukov, *Tetrah. Lett.*, 40, 7553 (1999).
- 3. Е. В. Бабаев, А. А. Цисевич, ХГС, 278 (1998).
- 4. E. V. Babaev, A. A. Tsisevich, J. Chem. Soc. Perkin Trans. 1, 399 (1999).
- 5. Г. Е. Хорошилов, Органический синтез и комбинаторная химия, Тез. докл., Москва, 1999, 163.
- 6. В. П. Литвинов, ЖОрХ, **31**, 1441 (1995).
- 7. П. Б. Терентьев, С. М. Виноградова, А. Н. Кост, XГС, 651 (1980).
- 8. К. П. Пасичниченко, Е. В. Бабаев, Молодежная научная школа по органической химии, Екатеринбург, 1999, 130.
- 9. Enraf-Nonius. CAD-4 Software. Version 5.0. Enraf-Nonius, Delft, The Netherlands.
- L. J. Farrugia, *WinGX-96*. An Integrated System of Publicaly Available Windows Programs for the Solution. Refinement and Analysis of Single Crystal X-Ray Diffraction Data. University of Glasgow, Scotland, U. K., 1996.
- G. M. Sheldrick, SHELX-97. Program for Solution and Refinement of Crystal Structures, University of Göttingen, Germany, 1997.
- 12. A. L. Speck, *PLUTON-96*. Molecular Graphics Program. University of Utrecht, The Netherlands, 1996.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: babaev@org.chem.msu.su Поступило в редакцию 28.10.99