Е. В. Бабаев, К. Ю. Пасичниченко, В. Б. Рыбаков, С. Г. Жуков, А. В. Ефимов

ГЕТЕРОЦИКЛЫ С МОСТИКОВЫМ АТОМОМ АЗОТА

13*. АНОМАЛЬНЫЙ ПРИМЕР СУЛЬФИРУЮЩЕГО ДЕЙСТВИЯ ДИМЕТИЛ-СУЛЬФАТА ПРИ ПОПЫТКЕ МЕТИЛИРОВАНИЯ 5-АМИНОИНДОЛИЗИНА. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА МЕТИЛОВОГО ЭФИРА 5-МОРФОЛИЛ-2-(*n*-НИТРОФЕНИЛ)ИНДОЛИЗИН-1-СУЛЬФОКИСЛОТЫ

В реакции 5-морфолино-2-(*n*-нитрофенил)индолизина с диметилсульфатом образуется продукт сульфирования — метиловый эфир 5-морфолил-2-(*n*-нитрофенил)индолизин-1-сульфокислоты, структура которого доказана методом PCA.

Ключевые слова: индолизин, оксазол, оксазоло[3,2-а]пиридин, пиридин, пиррол, рентгеноструктурный анализ, рециклизация с участием ацетилацетона, перхлорат 5-метил-2-(*n*-нитрофенил)оксазоло[3,2-а]пиридиния, 1-ацетил-2,5-диметилиндолизин.

Ранее нами предложен новый подход к синтезу неизвестного подкласса 5-аминоиндолизинов [2-4] рециклизацией солей оксазоло[3,2-а]пириреакционной дальнейшего изучения способности диния; таких индолизинов не проводилось. Алкилирование 5-аминоиндолизинов по аминогруппе могло бы приводить к образованию четвертичных солей с уходящей группой у атома С(5), что открывало бы возможность варьировать заместитель в этом положении реакциями нуклеофильного замещения. Хотя в литературе упоминалась возможность неселективного алкилирования алкилиндолизинов в ядро [5], слабая степень сопряжения группы 5-NR₂ с индолизиновым остатком [4] позволяла ожидать селективной атаки алкилирующего агента именно по аминогруппе.

Нами предпринята попытка метилирования 5-морфолил-2-(*п*нитрофенил)индолизина 1. При использовании в качестве алкилирующего агента иодистого метила наблюдалась лишь регенерация исходного вещества. В реакции индолизина 1 с диметилсульфатом исходное вещество полностью вступило в реакцию. С целью выделить ионную компоненту алкилирования (соль индолизил-5-триалкиламмония), реакционная смесь была обработана эфиром, а выпавший осадок растворен в серной кислоте и переосажден хлорной кислотой. Выделенное вещество по данным рентгеноструктурного анализа представляло собой метиловый эфир 5-морфолино-2-(*n*-нитрофенил)индолизинсульфокислоты-1 (2).

Структура образующегося соединения однозначно подтверждена данными рентгеноструктурного анализа. По данным PCA группа SO_2OMe ковалентно связана с атомом $C_{(1)}$, хотя отклонение атома серы от плоскости индолизинового цикла довольно велико и составляет почти 20° .

^{*} Сообщение 12 см. [1].

Фенильный цикл образует с плоским индолизиновым фрагментом угол 44°, а с нитрогруппой – 16°. Как и в случае других индолизинов (см. обсуждение в работе [4]), в скелете молекулы 2 наблюдается отчетливое альтернирование длин простых И двойных связей по цепочке C₍₅₎C₍₆₎C₍₇₎C₍₈₎C₍₉₎C₍₁₎C₍₂₎C₍₃₎. Аминогруппа в положении 5 отделена тремя двойными связями от 1-метилсульфогруппы, и заместители находятся в формальном сопряжении друг с другом. Такое сопряжение можно выявить на структурном уровне, сопоставляя геометрию фрагментов $N-C_{(5)}C_{(6)}C_{(7)}C_{(8)}C_{(9)}C_{(1)}$ B индолизине 2 И 5-аминоиндолизине, не содержащем акцептора В положении 1 (ср. данные РСА для 5-гексаметиленимино-2-(п-нитрофенил)индолизина [4]). Оказывается, что введение акцепторной группы в положение 1 приводит к укорочению связей N-C₍₅₎, C₍₆₎ -C₍₇₎ и C₍₉₎ -C₍₁₎, тогда как связи C₍₅₎ -C₍₆₎ и C₍₈₎ -C₍₉₎ незначительно удлиняются.

Нумерация атомов и структура соединения 2

Атом	x	У	Z	Ueq
C ₍₁₎	3360(7)	698(13)	3745(3)	23(2)
C(2)	4426(7)	398(14)	3635(3)	23(2)
C ₍₃₎	4817(7)	137(13)	3230(3)	24(2)
C(4)	3962(7)	-1430(14)	3121(3)	30(2)
C(5)	3910(8)	-3325(14)	2815(3)	31(3)
C ₍₆₎	2962(8)	-4591(15)	2844(3)	38(3)
C ₍₇₎	2046(8)	-4108(14)	3131(3)	35(3)
C ₍₈₎	2060(7)	-2325(14)	3429(3)	30(2)
N(9)	3071(5)	-1028(11)	3433(2)	26(2)
C(10)	5084(6)	3103(11)	3940(3)	26(2)
C(11)	4501(7)	4924(11)	4091(3)	32(3)
C(12)	5110(6)	6386(14)	4414(3)	38(3)
C(13)	6259(6)	6013(12)	4581(3)	36(3)
C(14)	6861(7)	4212(12)	4444(3)	42(3)
C(15)	6259(6)	2793(14)	4105(3)	41(3)
N(1)	6901(7)	7512(13)	4938(3)	50(2)
O(1)	6434(6)	9239(12)	4985(2)	71(2)
O(2)	7789(6)	6928(10)	5178(2)	60(2)
N(8)	1269(6)	-1609(11)	3763(2)	36(2)
C(21)	443(8)	-24(16)	3552(4)	45(3)
C(22)	-233(10)	878(18)	3975(4)	67(4)
O(23)	-867(6)	-808(11)	4207(2)	71(2)
C(24)	-91(11)	-2400(20)	4406(5)	73(4)
C(25)	594(9)	-3346(17)	3982(4)	55(3)
S ₍₁₎	5954(2)	561(4)	2858(1)	43(1)
O(11)	5722(5)	-513(10)	2380(2)	52(2)
O(12)	6192(5)	2762(11)	2845(2)	65(2)
O(13)	7068(5)	_347(10)	3163(2)	48(2)
C(26)	7112(10)	-2710(18)	3204(4)	58(3)
H(1)	2850(50)	1140(90)	4020(20)	7(17)
H(5)	4540(60)	3600(110)	2590(20)	40(20)
H ₍₆₎	2980(70)	-5490(130)	2620(30)	60(30)
H ₍₇₎	1190(60)	-4630(110)	3120(20)	40(20)
H(11)	3650(70)	5020(130)	3950(30)	70(30)
H(12)	4750(80)	7360(150)	4560(30)	90(30)
H ₍₁₄₎	7760(70)	3810(140)	4620(30)	80(30)
H(15)	6660(80)	1540(170)	4030(30)	100(30)
H ₍₂₁₁₎	-170(70)	-430(120)	3200(30)	60(20)
H(212)	860(70)	1220(140)	3370(30)	70(30)
H(221)	230(50)	1060(100)	4280(20)	20(20)
H(222)	-850(60)	1360(110)	3740(20)	30(20)
H(241)	-330(170)	-2700(300)	4560(70)	240(90)
H ₍₂₄₂₎	410(50)	-1720(100)	4650(20)	13(19)
H(251)	40(60)	_3910(120)	3690(30)	50(20)
H ₍₂₅₂₎	1120(60)	-4000(120)	4240(30)	50(20)
H ₍₂₆₁₎	6430(80)	_2970(130)	3450(30)	80(30)
H ₍₂₆₂₎	6900(50)	_2950(100)	2870(20)	20(20)
H(263)	7730(70)	-2770(130)	3490(30)	70(30)

Координаты атомов (х 10⁴) и эквивалентные изотропные параметры (U_{eq} х 10³) в исследованной структуре

Связь	d	Связь	d
C(1)-C(2)	1.352(10)	C ₍₁₂₎ —C ₍₁₃₎	1.371(7)
C(1)N(9)	1.382(9)	C(13)-C(14)	1.390(8)
C ₍₂₎ —C ₍₃₎	1.420(10)	C ₍₁₃₎ —N ₍₁₎	1.475(10)
C(2)-C(10)	1.499(10)	C(14)—C(15)	1.394(8)
C(3)-C(4)	1.404(11)	N(1)O(2)	1.205(8)
C ₍₃₎ —S ₍₁₎	1.709(8)	N(1)O(1)	1.225(9)
C(4)-N(9)	1.378(10)	N ₍₈₎ —C ₍₂₁₎	1.452(11)
$C_{(4)} - C_{(5)}$	1.434(11)	N(8)-C(25)	1.483(12)
C(5)-C(6)	1.354(11)	C ₍₂₁₎ —C ₍₂₂₎	1.508(13)
C ₍₆₎ —C ₍₇₎	1.372(12)	C ₍₂₂₎ —O ₍₂₃₎	1.447(12)
C ₍₇₎ —C ₍₈₎	1.364(11)	O ₍₂₃₎ —C ₍₂₄₎	1.411(13)
C ₍₈₎ —N ₍₈₎	1.382(10)	C(24)—C(25)	1.526(15)
C(8)N(9)	1.418(10)	S(1)—O(12)	1.416(7)
C(10)-C(15)	1.391(7)	S ₍₁₎ —O ₍₁₁₎	1.418(6)
C(10)-C(11)	1.402(7)	S ₍₁₎ O ₍₁₃₎	1.553(6)
C(11)—C(12)	1.393(8)	O(13)-C(26)	1.495(12)

Длины связей d (A) в молекуле исследованного соединения

Рационально объяснить обнаруженное направление реакции достаточно трудно. Следует полагать, что 2-п-нитрофенильная группа серьезно дезактивирует пиррольный фрагмент индолизина 1 ПО отношению к электрофильной атаке. Так, нам не удалось осуществить с соединением 1 стандартных для индолизинов реакций ацилирования (ацетилирования уксусным ангидридом или бензоилирования хлористым бензоилом). Аминогруппа в положении 5 также оказывается дезактивированной, причем возможно не столько по причине сопряжения, а из-за стерических факторов (неподеленная пара в аминоиндолизинах по данным РСА направлена в сторону пери-расположенного протона 3-Н). Кроме того, 5-аминогруппа по-видимому стерически препятствует атаке электрофила в положение 3. Так, по нашим предварительным данным, трифторацетилирование индолизина 1 приводит к смеси 1- и 3-трифторацетилпроизводных, тогда как 2-арилиндолизины образуют обычно исключительно 3-изомер [6]. Таким образом, положение 3 ядра индолизина (и вся молекула в целом) дезактивировано по отношению к реакции метилирования. Не вполне ясно, однако, почему в этом случае диметилсульфат проявляет нетипичные сульфирующие свойства.

Угол	ω	Угол	ω
C ₍₂₎ C ₍₁₎ N ₍₉₎	108.0(7)	$C_{(12)} - C_{(13)} - C_{(14)}$	122.9(8)
$C_{(1)} - C_{(2)} - C_{(3)}$	108.7(7)	C(12)-C(13)-N(1)	120.1(7)
$C_{(1)}-C_{(2)}-C_{(10)}$	123.0(7)	C(14)-C(13)-N(1)	116.9(7)
C ₍₃₎ -C ₍₂₎ -C ₍₁₀₎	128.0(7)	$C_{(13)} - C_{(14)} - C_{(15)}$	117.1(8)
$C_{(4)}-C_{(3)}-C_{(2)}$	106.6(7)	$C_{(10)} - C_{(15)} - C_{(14)}$	121.2(8)
C ₍₄₎ —C ₍₃₎ —S ₍₁₎	123.3(6)	O ₍₂₎ —N ₍₁₎ —O ₍₁₎	125.2(8)
C ₍₂₎ —C ₍₃₎ —S ₍₁₎	129.4(6)	$O_{(2)} - N_{(1)} - C_{(13)}$	118.9(7)
N ₍₉₎ -C ₍₄₎ -C ₍₃₎	106.9(7)	$O_{(1)} - N_{(1)} - C_{(13)}$	115.8(7)
N ₍₉₎ —C ₍₄₎ —C ₍₅₎	118.7(8)	C(8)-N(8)-C(21)	115.5(7)
C ₍₃₎ C ₍₄₎ C ₍₅₎	134.0(8)	C(8)-N(8)-C(25)	113.0(7)
C ₍₆₎ —C ₍₅₎ —C ₍₄₎	117.1(8)	C(21)-N(8)-C(25)	108.0(7)
C ₍₅₎ —C ₍₆₎ —C ₍₇₎	123.6(9)	$N_{(8)} - C_{(21)} - C_{(22)}$	110.1(8)
C ₍₈₎ —C ₍₇₎ —C ₍₆₎	121.2(9)	O ₍₂₃₎ —C ₍₂₂₎ —C ₍₂₁₎	109.4(9)
C ₍₇₎ C ₍₈₎ N ₍₈₎	130.5(8)	$C_{(24)}$ $- O_{(23)}$ $- C_{(22)}$	110.7(8)
C ₍₇₎ —C ₍₈₎ —N ₍₉₎	116.7(7)	O ₍₂₃₎ —C ₍₂₄₎ —C ₍₂₅₎	111.1(9)
N(8)-C(8)-N(9)	112.7(7)	N ₍₈₎ -C ₍₂₅₎ -C ₍₂₄₎	107.8(9)
C ₍₄₎ —N ₍₉₎ —C ₍₁₎	109.7(7)	O ₍₁₂₎ —S ₍₁₎ —O ₍₁₁₎	118.1(4)
C ₍₄₎ —N ₍₉₎ —C ₍₈₎	122.4(7)	O ₍₁₂₎ O ₍₁₃₎	102.8(4)
C(1)	127.9(7)	O ₍₁₁₎ —S ₍₁₎ —O ₍₁₃₎	110.7(4)
$C_{(15)} - C_{(10)} - C_{(11)}$	120.0(7)	O(12)-S(1)-C(3)	108.9(4)
$C_{(15)} - C_{(10)} - C_{(2)}$	119.4(7)	O ₍₁₁₎ —S ₍₁₎ —C ₍₃₎	109.0(4)
$C_{(11)} - C_{(10)} - C_{(2)}$	120.4(6)	O ₍₁₃₎ -S ₍₁₎ -C ₍₃₎	106.7(4)
C(12)-C(11)-C(10)	119.0(7)	C ₍₂₆₎ —O ₍₁₃₎ —S ₍₁₎	115.2(6)
$C_{(13)}$ - $C_{(12)}$ - $C_{(11)}$	119.6(8)		and and an entry

Валентные углы ω (град.) в молекуле исследованного соединения

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Реакция индолизина 1 с диметилсульфатом. Индолизин 1 (0.165 г, 0.51 ммоль) нагревают в растворе 2.8 г диметилсульфата 36 ч при 80 °С. Прозрачный раствор выливают в 50 мл эфира, образовавшийся осадок отфильтровывают, высушивают, растворяют в 4 мл конц. H₂SO₄, добавляют 5 мл хлорной кислоты и разбавляют водой до объема 80 мл. После охлаждения раствора до 5 °С выпавший осадок индолизина 2 отфильтровывают и используют монокристаллы для РСА. Выход вещества (до обработки кислотой) 0.14 г (65%).

Рентгеноструктурное исследование соединения 2 проведено на автоматическом монокристальном дифрактометре САД-4 на излучении λ МоК_{α}. Параметры элементарной ячейки определяли и уточняли в интервале 8—10 углов θ по 25 рефлексам. Кристаллы изученного соединения относятся к моноклинной сингонии (пространственная группа $P2_1/n$) с параметрами элементарной ячейки a = 11.456(3), b = 6.309(3), c = 25.952(13) Å, $\beta = 94.91(3)^{\circ}, Z = 4$. Структура решена прямыми методами по комплексу программ

SHELXS-97 [7] и уточнена полноматричным МНК по комплексу SHELXL-97 [8] в анизотропном приближении для атома серы. Остальные атомы уточнены в изотропном приближении. Все атомы водорода локализованы из разностного Фурье-синтеза электронной плотности и так же уточнены изотропно. Окончательный *R*-фактор составил 0.0705 по 903 независимым отражениям с $l \ge 2\sigma(l)$.

Позиционные параметры атомов в исследованном соединении и изотропные тепловые параметры, эквивалентные соответствующим анизотропным, приведены в табл. 1. Межатомные расстояния и валентные углы представлены в табл. 2 и 3 — соответственно. Пространственное расположение атомов в молекуле и их нумерация представлены на рисунке [9].

Работа выполнялась при поддержке РФФИ (Грант 99-03-33076а). Авторы также выражают благодарность РФФИ за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 96-07-89187).

СПИСОК ЛИТЕРАТУРЫ

- 1. Е. В. Бабаев, А. В. Ефимов, В. Б. Рыбаков, С. Г. Жуков, XIC, 401 (2000).
- 2. Е. В. Бабаев, А. В. Ефимов, ХГС, 998 (1997).
- 3. E. V. Babaev, A. V. Efimov, D. A. Maiboroda, K. Jug, Ann. Europ. J. Org. Chem., 193 (1998).
- 4. Е. В. Бабаев, А. В. Ефимов, С. Г. Жуков, В. Б. Рыбаков, *ХГС*, 983 (1998).
- 5. D. O. Holland, J. H. C. J. Nayler, J. Chem. Soc., 6, 1657 (1955).
- 6. Е. В. Бабаев, С. И. Бобровский, Ю. Г. Бундель, ХГС, 1570 (1988).
- 7. G. M. Sheldrick, *SHELXS-97. Program for the Solution of Crystal Structures.*, University of Göttingen. Germany, 1997.
- 8. G. M. Sheldrick, SHELXL-97. Program for the Refinement of Crystal Structures., University of Göttingen. Germany, 1997.
- 9. A. L. Spec, *PLUTON-92. Molecular Graphics Program.*, University of Utrecht. The Netherlands, 1992.

Московский государственный университет им. М. В. Ломоносова, Москва 119899, Россия e-mail: babaev@org.chem.su Поступило в редакцию 18.03.99