СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 3. ДИФРАКТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ КРИСТАЛЛОВ БРОМИДА 1-МЕТИЛ-2-ОКСО-2,3-ДИГИДРОИМИДАЗО[1,2-а]ПИРИДИНИЯ

© 2000 г. В. Б. Рыбаков, С. Г. Жуков, Е. В. Бабаев, О. С. Мазина, Л. А. Асланов

Московский государственный университет им. М.В. Ломоносова Поступила в редакцию 13.05.99 г.

Методом рентгеноструктурного анализа установлено строение кристаллов бромида 1-метил-2-оксо-2,3-дигидроимидазо[1,2-а]пиридиния $C_8H_9BrN_2O$. Структура решена прямыми методами и уточнена МНК до R = 0.0599. Установленная геометрия пиридинового фрагмента обусловливает ограничение числа центров, на которых возможна делокализация положительного заряда. Последняя, по-видимому, происходит преимущественно во фрагменте NCN имидазольного цикла и слабо затрагивает пиридиновый компонент молекулы.

Ранее нами было структурно исследовано превращение пиридина I в имидазопиридин II [1, 2]. Данная работа – продолжение структурного исследования цепочки превращений на основе соединений I и II. Соединение II формально является гидрохлоридом неустойчивого свободного основания III. Соединение III, легко вступающее в реакции с электрофильными реагентами, может быть выделено действием метилата натрия на соль II [3]. Объектом нашего изучения явилось соединение IV (гомолог соли II), которое мы получали из II действием основания и последующим метилированием (без выделения промежуточного соединения III):

Методом рентгеноструктурного анализа нами установлено строение кристаллов соли IV. До настоящего времени рентгеноструктурный анализ этого вещества, согласно сведениям из Кембриджского банка структурных данных [4], не проводился.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Соль IV первоначально выделяли в виде перхлората по методике [3], однако образующийся перхлорат не давал удовлетворительных кристаллов и был переведен в бромид. Для этого водный раствор перхлората обрабатывали насыщенным раствором КВг; выпавший перхлорат калия отфильтровывали, а водный раствор бромида IV упаривали досуха, перекристаллизовывали из раствора *i*-пропанол-вода 1 : 1 и использовали для рентгеноструктурного анализа. Прозрачные бесцветные кристаллы бромида IV имеют пластинчатый габитус.

Кристаллы бромида IV C₈H₉BrN₂O моноклинные. Параметры элементарной ячейки определены и уточнены по 25 рефлексам в области углов

Строение гетероциклического катиона IV.

θ 11°-13° на автоматическом дифрактометре САД-4 [5] (λМоК_α, графитовый монохроматор): $a = 7.806(1), b = 6.404(1), c = 8.812(1) \text{ Å}, \beta = 97.44(2)^{\circ},$ V = 436.8(1) Å³, $d_{\text{выч}} = 1.742$ г/см³, $\mu(\lambda \text{Mo}) = 4.656$ мм⁻¹, Z = 2, пр. гр. $P2_1/m$. На том же дифрактометре методом ω-сканирования в области $\theta \le 26^{\circ}$ измерено 934 отражения с $I \ge 2\sigma(I)$. Обработка экспериментального набора дифракционных данных проводилась по комплексу программ WINGX96 [6]. Структура определена прямыми методами и уточнена МНК в анизотропном приближении по программному комплексу SHELX97 [7]. Атомы водорода локализованы из разностного синтеза электронной плотности и включены в уточнение в изотропном приближении. Окончательные значения R1 = 0.0599, wR2 = 0.1374. Координаты атомов и их тепловые параметры представлены в таблице. Остаточная электронная плотность имела значения $\Delta \rho_{max} = 1.304$ и $\Delta \rho_{\min} = -1.265$ э/Å³. Изображение катиона IV получено с использованием программы PLUTON96 [8] и показано на рисунке.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Противоионом в соли IV выступает бромиданион. Гетероциклический катион находится в частном положении на плоскости зеркального отражения. В кристалле соединения IV (в отличие от II) водородные связи отсутствуют.

Сопоставление геометрии NH-производного II и гомологичного NCH₃-производного IV показывает, что введение метильной группы вызывает лишь незначительное удлинение связи C(4)–N(3) при переходе от II к IV. Длины всех остальных скелетных связей в II и IV практически идентичны. Такой результат подтверждает наше заключение [2], что соединение II действительно существует в таутомерной NH-форме, изоструктурной и совпадающей по геометрии со структурой NCH₃-производного IV.

Строение катионов II и IV можно выразить тремя резонансными структурами A, B и $C (R = H, CH_3)$:

Рассмотрим фрагмент C(6)C(7)C(8) (выделен жирной линией в структурах A, B). В II и IV средняя длина связи C(6)–C(7) = 1.381(4) Å, тогда как длина соседней связи C(7)–C(8) = 1.362(4) Å. Такое распределение длин связей во фрагменте C(6)C(7)C(8) согласуется с резонансными структурами A и B, но противоречит структуре C, которая подразумевает обратное распределение длин

КРИСТАЛЛОГРАФИЯ том 45 № 2 2000

Позиционные параметры атомов (×10⁴) и их эквивалентные (изотропные) тепловые параметры $U_{_{3KB}}/U_{_{И30}}$ (Å² × 10³)

Атом	x	у	z	$U_{ m экb}/U_{ m M30}$
Br	4404(1)	7500	7737(1)	42(1)
C(1)	2386(4)	2500	8644(4)	35(1)
C(2)	741(4)	2500	9354(3)	36(1)
O(2)	578(3)	2500	10698(3)	53(1)
N(3)	-612(3)	2500	8179(3)	31(1)
C(3)	-2432(4)	2500	8381(4)	45(1)
C(4)	-12(4)	2500	6777(3)	23(1)
C(5)	-913(4)	2500	5322(4)	31(1)
C(6)	52(5)	2500	4116(4)	33(1)
C(7)	1835(5)	2500	4360(4)	35(1)
C(8)	2690(4)	2500	5811(4)	31(1)
N(9)	1725(3)	2500	7007(3)	26(1)
H(11)	3050(24)	1310(36)	8835(22)	20(5)
H(31)	-2694(46)	2500	9425(46)	53(12)
H(32)	-2983(35)	1197(49)	7881(34)	69(9)
H(5)	-2147(41)	2500	5161(38)	33(9)
H(6)	-667(47)	2500	3032(49)	69(15)
H(7)	2640(51)	2500	3670(50)	65(13)
H(8)	3737(36)	2500	6017(34)	17(8)

связей – C(6)-C(7) короче C(7)-C(8). Из двух структур A и B для IV вторая предпочтительна, поскольку в ней на атоме азота пиридинового фрагмента сосредоточен положительный заряд, к которому должен притягиваться бромид-анион, т.е. расстояние N(9)...Вг должно быть короче, чем N(3)…Br, что и наблюдается в кристаллической структуре IV (3.833(1) и 5.112(2) Å соответственно). В структуре II [2] хлорид-анион находится ближе к атому N(3), а не к N(9) (кратчайшие расстояния без водородных связей N(3)…Cl = 3.045(2) Å, N(9)…Cl = 5.025(2) Å), что предполагает для II предпочтительность структуры А. Частичная фиксация геометрии пиридинового фрагмента влечет ограничение числа центров, на которых возможна делокализация положительного заряда. Такая делокализация, по-видимому, происходит преимущественно во фрагменте N(9)C(4)N(3) имидазольного цикла и слабо затрагивает пиридиновый цикл.

Работа выполнялась при поддержке Российского фонда фундаментальных исследований (грант 99-03-33076а), благодарность фонду авторы также выражают за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 99-07-90133).

СПИСОК ЛИТЕРАТУРЫ

- 1. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. № 6. С. 1067.
- 2. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 2000. Т. 45. № 1. С. 108.
- 3. *Сыч Е.Д., Горб Л.Т. //* Укр. хим. журн. 1996. № 9. С. 961.
- 4. Allen F.H., Kennard O. // Chem. Des. Autom. News. 1993. V. 8. P. 31.

- Enraf-Nonius (1989). CAD4 Software. Version 5.0. Enraf-Nonius. Delft, Netherlands.
- Farrugia L.J. WINGX96. An Integrated System of Publicly Available Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data. University of Glasgow, Scotland, U.K., 1996.
- 7. Sheldrick G.M. SHELX97. Programs for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- 8. Spek A.L. PLUTON96. Molecular Graphics Program. University of Utrecht, Netherlands, 1996.