КРИСТАЛЛОГРАФИЯ, 2000, том 45, № 1, с. 108–110

СТРУКТУРА ОРГАНИЧЕСКИХ СОЕДИНЕНИЙ

УДК 548.73;547.7

РЕНТГЕНОСТРУКТУРНОЕ КАРТИРОВАНИЕ В ГЕТЕРОЦИКЛИЧЕСКОМ ДИЗАЙНЕ. 2. ДИФРАКТОМЕТРИЧЕСКОЕ ИССЛЕДОВАНИЕ СТРУКТУРЫ КРИСТАЛЛОВ ГИДРОХЛОРИДА 2-ОКСО-2,3-ДИГИДРОИМИДАЗО[1,2-*а*]ПИРИДИНА

© 2000 г. В. Б. Рыбаков, С. Г. Жуков, Е. В. Бабаев, О. С. Мазина, Л. А. Асланов

Московский государственный университет им. М.В. Ломоносова

Поступила в редакцию 13.05.99 г.

Методом рентгеноструктурного анализа установлено строение гидрохлорида 2-оксо-2,3-дигидроимидазо[1,2-*a*]пиридина $C_7H_7ClN_2O$. Структура решена прямыми методами и уточнена МНК до R = 0.0408. Альтернирование длин связей в молекуле существенно нивелируется, хотя и сохраняется в незначительной степени, поскольку ароматизации при образовании бицикла из моноцикла не происходит. Соответствующее структурное изменение следует, вероятно, связывать с возрастанием сопряжения NH-группы с пиридиновым остатком бицикла. Одной из особенностей строения соли является образование водородной связи N⁺–H···Cl⁻: N–H 0.792, H···Cl 2.260 Å, N–H···Cl 171.2°.

Данная работа служит продолжением серии исследований гетероциклических соединений, которые обладают способностью вступать в реакции циклизации и трансформации циклов [1–5]. В предыдущем сообщении [5] мы изучили строение 1,2-дигидро-2-имино-1-карбоксиметилпиридина (I); в настоящей работе установлено строение продукта его циклизации – гидрохлорида 2-оксо-2,3дигидроимидазо[1,2-*а*]пиридина (II).

Впервые циклизацию I — II осуществил Рейндель в 1924 г. [6]; образующемуся веществу, однако, было приписано ошибочное строение пирроло[2,3-b]пиридина. Как доказал Чичибабин [7], в ходе циклизации образуется имидазолоновый фрагмент. По сведениям из Кембриджского банка структурных данных [8] рентгеноструктурный анализ соединения II не проводился. Синтез II осуществлен по описанной методике [6]:

Перекристаллизация из раствора *i*-пропанол–вода 1 : 1 дает прозрачные бесцветные кристаллы пластинчатого габитуса.

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

Кристаллы II С7H7ClN2O триклинные. Параметры элементарной ячейки определены и уточнены по 25 рефлексам в области углов 0 11°-14° на автоматическом дифрактометре CAD-4 [9] (λMoK_{α} , графитовый монохроматор): а = 7.121(2), b = = 7.621(2), c = 8.312(2) Å, $\alpha = 65.69(2)^\circ$, $\beta = 67.45(2)^\circ$, $\gamma = 70.24(2)^{\circ}$; V = 370.9(2) Å³; $d_{\text{BMY}} = 1.528 \text{ r/cm}^3$; $\mu(\lambda Mo) = 0.450 \text{ мм}^{-1}; Z = 2; пр. гр. P1. На том же$ дифрактометре методом ω-сканирования в области $\theta \le 26^{\circ}$ измерено 2187 отражений с $I \ge 2\sigma(I)$. Обработка экспериментального набора дифракционных данных проводилась по комплексу программ WinGX96 [10]. Координаты неводородных атомов были получены с использованием прямых методов, структура уточнена МНК в анизотропном приближении по программному комплексу SHELX97 [11]. Позиции всех атомов Н были локализованы из разностного синтеза электронной плотности и включены в уточнение в изотропном приближении. Окончательные значения R1 = 0.0408, wR2 = 0.0930. Координаты атомов и их тепловые параметры представлены в таблице. Остаточная электронная плотность имела значения $\Delta \rho_{\text{max}} = 0.253$ и $\Delta \rho_{\text{min}} = -0.255$ э/Å³. Изображение органического катиона получено с использованием программы PLUTON96 [12] и показано на рисунке.

РЕЗУЛЬТАТЫ И ИХ ОБСУЖДЕНИЕ

Противоионом в соединении II служит хлориданион. Гетероциклический катион имеет планарное строение; наибольшее отклонение атомов от плоскости бицикла составляет 0.011(2) Å. Теоретически можно допустить существование II в виде одного из трех таутомеров *A*, *B* или *C*:

Однако связь C(1)–C(2) (рисунок) является простой связью C–C (1.51 Å), что исключает таутомер C, а связь C(2)–O(2) – обычная двойная связь C=O (1.20 Å), что исключает таутомер B. Строение катиона II, таким образом, однозначно описывается таутомером A.

Интересно сопоставить структурные изменения при циклизации I —> II. Как мы уже отмечали [5], в I наблюдается отчетливое чередование длин связей в цикле: фактически в молекуле I присутствует квазидиеновый фрагмент. В ходе циклизации длины связей в шестичленном фрагменте выравниваются и альтернирование длин связей в II существенно нивелируется, хотя и продолжает сохраняться в незначительной степени:

Указанная структурная особенность весьма примечательна, поскольку никакой ароматизации при образовании бицикла из моноцикла не происходит. Соответствующее структурное изменение следует, вероятно, связывать с возрастанием сопряжения NH-группы с пиридиновым остатком бицикла.

Другой особенностью строения соли II является образование водородной связи $N(3)^+$ –H(3)···Cl⁻: N(3)–H(3) = 0.79, H(3)···Cl = 2.26 Å, N(3)–H(3)···Cl = 171°.

КРИСТАЛЛОГРАФИЯ том 45 № 1 2000

Позиционные параметры атомов (×10⁴) и их эквивалентные (изотропные) тепловые параметры $U_{_{3KB}}/U_{_{H3O}}$ (Å² × 10³) для молекулы II

Атом	x	у	Z	$U_{ m экb}/U_{ m изo}$
Cl	3283(1)	1424(1)	8058(1)	44(1)
C(1)	1527(5)	8296(3)	2928(3)	40(1)
C(2)	1959(4)	7252(3)	4782(3)	40(1)
O(2)	1793(3)	7963(3)	5889(3)	58(1)
N(3)	2584(3)	5279(3)	4961(3)	40(1)
C(4)	2623(3)	4945(3)	3459(3)	34(1)
C(5)	3171(4)	3200(3)	3088(3)	42(1)
C(6)	3022(4)	3304(4)	1453(4)	44(1)
C(7)	2365(4)	5090(4)	219(4)	43(1)
C(8)	1866(4)	6783(4)	613(3)	38(1)
N(9)	2016(3)	6668(2)	2226(2)	31(1)
H(11)	2420(39)	9159(37)*	2174(35)	41(7)
H(12)	108(49)	8941(42)	3078(39)	55(8)
H(3)	2762(43)	4332(42)	5847(40)	51(8)
H(5)	3563(40)	2025(38)	3951(36)	40(6)
H(6)	3492(40)	2152(39)	1119(35)	47(7)
H(7)	2256(44)	5137(42)	-911(42)	62(8)
H(8)	1490(39)	8035(38)	-119(35)	41(7)

Работа выполнялась при поддержке Российского фонда фундаментальных исследований (грант № 99-03-33076а), благодарность фонду авторы также выражают за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 99-07-90133).

Нумерация атомов и строение исследованной молекулы.

СПИСОК ЛИТЕРАТУРЫ

- Бабаев Е.В., Ефимов А.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1998. № 7. С. 983.
- Babaev E.V., Bozhenko S.V., Maiboroda D.A. et al. // Bull. Soc. Chim. Belg. 1997. V. 106(11). P. 631.
- 3. Zhukov S.G., Rybakov V.B., Babaev E.V. et al. // Acta Cryst. C. 1997. V. 53. P. 1909.
- Бабаев Е.В., Боженко С.В., Жуков С.Г., Рыбаков В.Б. // Химия гетероцикл. соединений. 1997. № 8. С. 1105.
- 5. Рыбаков В.Б., Жуков С.Г., Бабаев Е.В. и др. // Кристаллография. 1999. Т. 44. № 6. С. 1067.
- 6. Reindel F. // Ber. 1924. Bd. 57. S. 1381.

- 7. Tschitschibabin A.E. // Ber. 1925. Bd. 57. S. 2092.
- 8. Allen F.H., Kennard O. // Chem. Des. Autom. News. 1993. V. 8. P. 31.
- 9. Enraf-Nonius (1989). CAD4 Software. Version 5.0. Enraf-Nonius. Delft, Netherlands.
- Farrugia L.J. WinGX96. An Integrated System of Publicly Available Windows Programs for the Solution, Refinement and Analysis of Single Crystal X-Ray Diffraction Data. University of Glasgow, Scotland, U. K. 1996.
- 11. Sheldrick G.M. SHELX97. Programs for the Solution and Refinement of Crystal Structures. University of Göttingen, Germany, 1997.
- 12. Spek A.L. PLUTON96. Molecular Graphics Program. University of Utrecht, Netherlands, 1996.