Е. В. Бабаев, С. В. Боженко, С. Г. Жуков, В. Б. Рыбаков

ОБРАЗОВАНИЕ ХИНАЗОЛОНА-4 ПРИ ПОПЫТКЕ СИНТЕЗА СИММЕТРИЧНОГО АМИДИНА АНТРАНИЛОНИТРИЛА. КРИСТАЛЛИЧЕСКАЯ СТРУКТУРА 3-(2-ШИАНОФЕНИЛ-1)ХИНАЗОЛОНА-4

Попытка синтеза сим-диарилформамидина реакцией антранилонитрила и его N-формилпроизводного привела к образованию 3-(2-шианофенил-1)хиназолона-4. Структура полученного вещества подтверждена данными рентгеноструктурного анализа.

На основе простого правила «гетероальтернирования» была предложена 5+1 схема синтеза ядра пиридинов и хинолинов циклизацией 1,5-биэлектрофильного фрагмента СССИС и 1,1-бинуклеофильного одноуглеродного фрагмента [1]. Предсказанная схема реакции подтверждена эксперимен-[2] реакцией амидина антраниловой кислоты ſa именно. тально 2-(N,N-диметиламинометиленимино)бензойной кислоты] и нитрометана. Несколько позднее аналогичная 5+1 схема синтеза (с тем же распределением полярностей в реагентах) была переоткрыта на примере реакции эфира N-трифторацетилантраниловой кислоты с реактивом Виттига [3].

1,5-биэлектрофильными субстратами, пригодными Потенциальными для синтеза хинолинов по этой схеме, являются симметричные амидины на основе производных антраниловой кислоты. В этом случае в качестве уходящей группы в реакции с углеродным бинуклеофилом мог бы выступать любой из остатков производного антраниловой кислоты. Один из способов синтеза симметричных амидинов (например, дифенилформамидина [4]) из ароматических аминов включает конденсацию соответствующих форманилида и анилина. Производные антраниловой кислоты до сих пор не использовались в качестве субстратов такой реакции, хотя ряд несимметричных амидинов описан [2, 5].

Нами найдено, что при попытке получить симметричный формамидин с использованием в качестве ароматического амина антранилонитрила образуется 3-(2-цианофенил-1) хиназолон-4.

Отнесение полученного вещества к классу хиназолонов-4 подтверждается данными ИК спектра; наблюдаемые частоты колебаний типичны для этого класса [6]. Пики в масс-спектре отвечают ожидаемым последовательным стадиям диссоциации хиназолонового фрагмента. Дублет при 8,28 м. д. в спектре ПМР следует, по-видимому, отнести к сигналу протона в пери-положении к 4-оксогруппе. Тем не менее, спектральные методы не 1105

Атом	x	у	z	U _{экв}
O (1)	-208 (9)	1363(9)	3314(6)	54(2)
N(1)	3037(11)	1304(9)	3280(7)	34(2)
N(2)	2500(17)	4011(12)	893(10)	76(4)
C(2)	4860(14)	1580(11)	3920(10)	40(3)
N(3)	5280(12)	2368(9)	5068(8)	45(3)
C(4)	3776(14)	2986(11)	5624(9)	38(3)
Co	4235(16)	3919(13)	6800(10)	52(3)
C(6)	2801(16)	4525(13)	7364(10)	54(3)
C(7)	941(17)	4272(13)	6853(11)	61 (4)
C(8)	420(16)	3351(13)	5706(11)	57(4)
C(9)	1865(15)	2702(11)	5090(10)	39(3)
C(10)	1415(16)	1714(12)	3838(10)	37(3)
C(11)	2833(14)	414(12)	2035(10)	37(3)
C(12)	2557(14)	1122(13)	843(10)	38(3)
C(13)	2340(14)	270(12)	-382(10)	41 (3)
C(14)	2392(14)	-1230(13)	-399(10)	44(3)
C(15)	2618(15)	-1970(12)	746(11)	52(3)
C(16)	2843(14)	-1138(13)	1998(10)	47(3)
C(17)	2504(18)	2705(16)	857(11)	53(4)
H(2)	5848	1183	3511	48
H(5)	5492	4116	7183	62
H(6)	3104	5149	8143	65
H(7)	14	4725	7280	73
H(8)	-853	3164	5352	68
H(13)	2161	745	-1179	49
H(14)	2271	-1785	-1219	52
H(15)	2624	-3021	706	62
H(16)	2996	~1635	2787	56

Координаты атомов (× 10⁴) и эквивалентные изотропные параметры $(U_{\text{экв}} \times 10^3)$ в исследованной структуре

позволяли приписать полученному соединению однозначное строение. Окончательное подтверждение структуры хиназолона осуществлено с помощью рентгеноструктурного анализа (см. рисунок, табл. 1—3). Как видно, арильная группа (атомы $C_{(11)}$ — $C_{(16)}$ на рисунке) в структуре полученного соединения повернута относительно фрагмента $N_{(1)}$ — $C_{(10)}$ по связи $N_{(1)}$ — $C_{(11)}$ на 70°. Остальные геометрические параметры молекулы (длины связей и валентные углы) находятся в хорошем согласии с общепринятыми значениями.

Нумерация атомов и структура исследованного соединения

Связь	d	Связь	d
O(1)-C(10)	1,212(11)	C(7)-C(8)	1,376(13)
N(1)-C(10)	1,375(11)	C(8)-C(9)	1,400(12)
N(1)-C(2)	1,386(11)	C(9)-C(10)	1,486(12)
N(1)-C(11)	1,432(11)	C(11)C(16)	1,373(12)
N(2)-C(17)	1,155(13)	$C(11) - C_{(12)}$	1,392(12)
C(2)-N(3)	1,312(11)	$C(12) - C_{(13)}$	1,399(12)
N(3)C(4)	1,394(11)	C(12)C(17)	1,41(2)
C(4)C(9)	1,397(12)	C(13)-C(14)	1,335(12)
C(4)C(5)	1,400(13)	C(14)-C(15)	1,358(13)
C(5)-C(6)	1,351(13)	C(15)-C(16)	1,413(13)
C(6)-C(7)	1,357(14)		

Длины связей d (Å) в молекуле исследованного соединения

ЭКСПЕРИМЕНТАЛЬНАЯ ЧАСТЬ

3-(2-Цианофенил-1)хиназолон-4. К раствору 5 ммоль нитрила антраниловой кислоты в 30 мл толуола добавляют избыток (54 ммоль) муравьиной кислоты и кипятят 2 ч. Избыток муравьиной кислоты и воду отгоняют с помощью насадки Дина—Старка. К раствору образовавшегося N-формилпроизводного антранилонитрила добавляют 5 ммоль тионилхлорида и 5 ммоль антранилонитрила. Смесь нагревают в течение 1 ч и упаривают в вакууме. Остаток обрабатывают водой. Водный раствор содержит непрореагировавший N-формилантранилонитрил. Нерастворившийся осадок (0,11 г, 9%, $T_{\rm HR}$ 191...192 °C) представляет собой 3-(2-цианофенил-1)хиназолон-4. ИК спектр (вазел. масло): 1617 (С-N), 1690 (С-O), 2247 см⁻¹ (СN). Спектр ПМР (СD₃CN, 200 МГц): 8,28 (1H, д, J = 8 Гц, 5-H); 8,15 (1H, с, H-2); 7,8 (7H, м, Ar). Масс-спектр, m/z (J, $%_0$): 247 (100) [M⁺], 219 (91) [M-CO]⁺, 192 (6) [M-CO-HCN]⁺, 129 (20) [NCC₆H₄NCH]⁺, 119 (16) [NCC₆H₄CO]⁺, 102 (40) {C₆H₄CN]⁺, 90 (20) [C₆H₄N]⁺, 76 (25) [C₆H₄]⁺.

Рентгеноструктурное исследование 3- (2-цианофения-1) хиназолона -4 проведено на автоматическом монокристальном дифрактометре САД-4 на излучении λ Мо К α . Параметры элементарной ячейки определяли и уточняли в интервале 12...13° углов θ по 25 рефлексам. Кристаллы

Таблица З

Угол	w	Угол	w
C(10)-N(1)-C(2)	123,3(8)	O(1)-C(10)-N(1)	122,7(9)
C(10)-N(1)-C(11)	119,7(8)	$O(1) - C_{(10)} - C_{(9)}$	123,4(10)
$C_{(2)} - N_{(1)} - C_{(11)}$	116,7(8)	$N(1) - C_{(10)} - C_{(9)}$	113,7(10)
$N_{(3)} - C_{(2)} - N_{(1)}$	124,1(9)	$C(16) - C_{(11)} - C_{(12)}$	119,3(10)
C(2)-N(3)-C(4)	116,0(9)	$C(16) - C_{(11)} - N_{(1)}$	121,4(10)
N(3)C(4)C(9)	123,8(9)	$C(12) - C_{(11)} - N_{(1)}$	119,4(9)
N(3)-C(4)-C(5)	117,0(10)	$C(11) - C_{(12)} - C_{(13)}$	120,3(10)
C(9)-C(4)-C(5)	119,2(1)	C(11)C(12)C(17)	120,4(10)
C(6)-C(5)-C(4)	118,2(10)	$C(13) - C_{(12)} - C_{(17)}$	119,3(10)
C(5)-C(6)-C(7)	123,5(11)	C(14)C(13)-C(12)	119,5(10)
C(6)-C(7)-C(8)	120,3(11)	C(13)-C(14)-C(15)	122,0(11)
C(7)-C(8)-C(9)	118,0(11)	C(14)-C(15)-C(16)	119,8(10)
$C_{(4)} - C_{(9)} - C_{(8)}$	120,9(10)	C(11) - C(16) - C(15)	119,2(10)
C(4)-C(9)-C(10)	118,2(10)	$N(2) - C_{(17)} - C_{(12)}$	178,2(14)
$C_{(8)} - C_{(9)} - C_{(10)}$	120,9(10)		

Валентные углы 🛛 (град.) в молекуле исследованного соединения

изученного соединения относятся к триклинной синтонии (пространственная группа Р-1) с параметрами элементарной ячейки $a = 6,963(3), b \Rightarrow 8,845(9), c = 9,935(4)$ Å, $\alpha = 91,95(6)^{\circ}$, eta = 90,09(6)°, γ = 103,30(6)°, Z = 2. Структура решена прямыми методами и уточнена полноматричным МНК по комплексу программ SHELX [7] в анизотропном приближении неводородных атомов. Координаты атомов водорода рассчитывали из геометрических соображений и уточняли в жесткой связке с соответствующими атомами углерода. Окончательный R-фактор составил 8,81% по 1114 независимым отражениям с $l > 2\sigma(l)$.

Позиционные параметры атомов в исследованном соединении и изотропные тепловые параметры, эквивалентные соответствующим анизотропным, приведены в табл. 1. Межатомные расстояния и валентные углы представлены табл. 2 и 3. Пространственное расположение атомов в молекуле и их нумерация представлены на рисунке [8].

Авторы выражают благодарность РФФИ за финансовую поддержку в оплате лицензии на пользование Кембриджским банком структурных данных (проект № 96-07-89187).

СПИСОК ЛИТЕРАТУРЫ

1. Babaes E. B. // XFC. — 1993. — № 7. — C. 937.

- 2. Бабаев Е. В. // ХГС. 1993. № 7. С. 962.
- 3. Latham E. J., Murphy S. M., Stamforth S. F. // Tetrah. Lett. 1994. -- Vol. 35. -- P. 3395.
- 4. Shoesmith J. B., Haldane J. // J. Chem. Soc. 1923. N 7. P. 2704.
- Walsh D. A. // Synthesis. 1980. N 9. P. 677.
 Culbertson H., Decius J. C., Christensen B. E. // J. Amer. Chem. Soc. 1952. Vol. 74. -P. 4834.
- 7. Sheldrick G. M. SHELXL93. Program for the refinement of Crystal Structures. University of Gottingen. Germany, 1993.
- 8. Spek A. L. PLUTON92. Molecular Graphics Program. University of Utrecht. The Netherlands, 1992.

Московский государственный университет им. М. В. Ломоносова, Москва 119899

Поступило в редакцию 16.04.97