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1. Origin of Periodicity
We meet with periodicity when something is repeated in time or in space. Periodic
processes - like the rotations of planets, changes of seasons, high and low tides - are
examples of global (all-pervading) periodicity in our solar system and in nature.
Ancient astronomers and astrologers used some of these periodicities to regulate the
activities of individuals and even of nations. Periodicity is an essential part of our
life, as evidenced by the beating of our hearts and our eating, sleeping, and waking
patterns. Geometrical or physical objects that are repeated in space (such as infinite
mosaics or atoms in crystals) express other familiar examples of periodicity.

Because periodicity is such an important phenomenon, scientists have been
interested in it for several centuries. Mathematicians describe periodicity in terms of
periodic functions such as F(X) = F(X + nT), where X is a time or space coordinate,
F(X) is a function describing something variable that repeats its value after every
addition of the constant value T (the period) to the argument X, and n is an integer.
The classical periodic functions Y = sin X and Y = cos X behave in this way, with
clear alternations of maxima and minima. It is easy to imagine regular processes that
are 'almost periodic' with a variable period T (for instance, if one eats or sleeps
irregularly) or with changes in the amplitude of F(X), as in the damped saw-tooth
curves shown in Figure 1. In a case such as that in Figure 1, a strict mathematical

Figure 1 Example of an 'almost periodic' function (ionization potentials of atoms
against their atomic numbers).

definition of the periodic function would be somewhat difficult. Nevertheless, it is
only common sense that such a function can be treated as a periodic one. Such a
qualitative, approximate understanding of periodicity and periodic functions has
been widely adopted by the chemical community since the classical work at the end
of the last century, leading up to the periodic table.



2. The Periodic Table
By the middle of the last century chemists generally understood that chemical
elements can be grouped together in separate classes according to obvious
similarities or dissimilarities in their properties. Thus, flammable alkali metals (that
form stable cations) can be naturally separated from poisonous halogens (that prefer
to form anions). It had also been demonstrated by Dobereiner that some elements
may be grouped into triads so that the middle element's properties can be
approximated as the average of the properties of its neighbors. Clarification of the
concept of atomic weight by Cannizzaro in 1858 stimulated attempts to find a
rational classification of the elements. In the 1850s-1890s several workers combined
the principle of triads and chemical similarity, and used the atomic weights (really
masses) of the elements to formulate the periodic law (see Table 1).

The idea of periodicity is expressed in Mendeleev's periodic chart, Figure 2. In
this table the elements are arranged in rows (according to increasing atomic mass)
and columns (according to chemically similar behavior) as in other early tables.
However, only Mendeleev used this chart to predict previously unknown elements
and to improve the known atomic masses of some elements (see Section 2.1). For
simplicity, the elements of the table can be numbered in order of increasing atomic
charge, though the physical meaning of such numbers was explained only a few
decades later.

What sort of periodicity is expressed by this chart? Qualitatively speaking, the
periodicity displayed here is simply the regular appearance of element-analogs with
increasing atomic mass. Thus, the elements with numbers %..11, 19,37,55 are alkali
metals, and those with numbers 9, 17, 35, 53 are halogens. It can be seen that the
lengths of the rows (periods) in the periodic table are different and equal to 2, 8, 8,
18,18, and 32. A mathematician would claim that there is no exact periodicity, since
the period itself is not of constant value.11 From the chemical viewpoint, however, it
is a very important matter to place each element (especially each heavy element)
such that its chemical nature resembles that of lighter elements. As a result, a lot of
attempts have been undertaken by generations of chemists to express this non-exact
periodicity in different graphic forms of the periodic table. Many examples have
been collected in books,2'3*12'13 and we refer here only to few specially interesting
cases (Figures 3a-c), such as the spiral, helical, and 'dumb-bell' forms.

2.1 Its Chemical Uses
The law of periodicity has stimulated better understanding of the interrelationships
between elements, the design of new classes of compounds, and the search for and
discovery of new elements. The topic has been extensively reviewed in many
books,2"4'10"12'17"20 and according to a comprehensive review4 the total number of
references related to chemical periodicity up to 1969 had reached 3000.

The heuristic role of the periodic table was recognized very clearly at the end of
the last century. At that time it was proved that many macroscopic properties of
elements (such as density, atomic volumes, and melting points) could be treated as
periodic-like functions. Also, a method for the quantitative calculation of the



TABLE 1 Some Milestones in the Discovery of the Periodic Table

Contributor Year Contribution

Dobereiner 1829 Classification of elements into triads [1]

Kjtmers

Gladston

Cooke

Lenssen

Penenkofer

Dumas

Strecker

Hinrictis

1852

1833

1854

1857

1853

1858

1859

1867

Development of rational classifications of elements

and regularities in their atomic weights [2-4]

Odling 1857,1864 Table of 43 elements arranged in 13 groups [5]

De Chancourtois 1862 Classification of elements (spiral around cylinder)

with increase of their atomic weights [6]

Meyer 1864,1871 Arranging of similar elements in groups,

periodicity of atomic volumes [7]

Newlands 1865 Law of Octaves [8]

Mendeleev 1869,1871 Periodic table; prediction of new elements and their

properties; changes/improvements of known atomic

weights [9,10]



Figure 2 The Periodic Table of the elements.



Figure 3 Examples of different non-traditional forms of the periodic chart for the
elements: (a) the spiral form due to Baumgauer,14 (b) the helical form due
to Bilecki,15 and (c) the 'dumb-bell' form due to Basset.16 (Adapted from
ref. 13.)



macroscopic properties of new (or even unknown!) elements was developed (Table
2). This method (most consistently and successfully used by Mendeleev) included
comparison of the properties of all the neighbors of a given element in the periodic
table. An element is surrounded by a maximum of eight neighbors; it thus belongs to
four triads (horizontal, vertical and two diagonal triads). An analysis of the trends in
properties in each triad provides a way to estimate any unknown property. This
methodology, equally applicable to elements and their compounds, opened up the
possibility of estimating desired properties with high accuracy (see Table 2).
However, this general method of comparative calculation of elemental properties is
rather rarely used in practice. Instead, nowadays, chemists use the Periodic Law (and
the periodic chart) to analyze qualitative (but not quantitative) trends in different
properties of the elements. This opportunity to see general chemical trends directly
from the periodic chart is of great importance in modern chemical education. Indeed,
it is easy to distinguish (say) metals from non-metals at first glance in the 'school'
periodic chart, by locating them respectively at the lower left and upper right corners
of the table.

2.2 Its Physical Explanation
The modern interpretation of the periodic table appeared after the development of the
physical model of the atom as a positively charged nucleus surrounded by negatively
charged electrons. Atoms of different elements differ by the charge (number of
protons) in their nuclei. This hypothesis, which was proved experimentally,30

explained the element numbers in the periodic table as a set of natural physical
invariants for atoms.

Moreover, an explanation has been given for the irregular lengths of the rows in
the periodic table as well as for the origin of groups with chemically similar
elements. The electrons of every atom can be subdivided into shells, and each shell
can hold a different number of electrons. The shells are concentric about the nucleus.
Atoms with a fixed number of electrons in the inner shells correspond to a row of
elements in the periodic table, while atoms with a constant number of electrons in the
outer shell correspond to a group of elements. The electrons in the outer shell are
usually called valence electrons, since they are responsible for chemical bonding and
their number is connected with the chemical valency of the atom. Thus, the periodic
system is constructed (and can be explained) on the basis of the isoelectronic
principle: atoms are arranged as isovalent families (vertical groups) and
'iso-inner-electronic' families (horizontal rows). The different numbers of electrons
that can be held by the inner shells reflect the different lengths of the periods
observed in the periodic table.

It is significant that not only the macroscopic properties of elements, but also
many of the microscopic properties of atoms, demonstrate pronounced periodicity.
Examples of such properties include the atomic radius and volume, ionization
potential, electron affinity, electronegativity, and some optical and magnetic
properties.2,4,17-20 The function in Figure 1 is actually the first ionization energy of
atoms plotted against their atomic number.
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TABLE 2 Use of the Periodic Table for Prediction of Elements
and Their Properties in the Nineteenth Century

Elementa) Prediction of element/propertyb)

principal researcher, date

Experimental discovery

contributor, date

Ga Eka-Alaminium (Ea)

M<=68, d=5.9, low m.p.

Mendeleev, 1969-719,10

Gallium

M=69.72, d=5.904,

m.p.=30

Lecoq de Boisbaudran,

1875-7621

Sc Eka-Boron (Eb)

M=44, d (Eb2O3)=3.5

Mendeleev, 1S69-719,10

Scandium

M=45.1,d(Sc2O3)=3.864

Nilson, 1879-8O22

Ge Eka-Silinum (Es), M=72, d=5.5

d (EsO2)=4.7; b,p.(EsCl4)=90

Mendeleev, 1869-719,10

Germaniom, M=72.5

d=5.35

d (GeO2)=4.703;

b.p.(GeCl4)=86

Winkler, 188623

Ne

Kr,Xe

Be

New gaseous element, M=20

Elements analogous to He and Ar

Ramsay, 1895-9724

Neon, M=19.96

Krypton, Xenon

Ramsay, Travers,

Decrease of atomic weight (1.5 times) Nilson, Petersen, 188427

Mendeleev, 18699,10; Brauner. 1878S26

In Increase of atomic weight (1.5 times) Bunzen, Mendeleev,

Mendeleev, 1869-709,10; Meyer, 18707

Ce, V, Er Increase of atomic weights (1.5 times) Brauner, 1881; Cleve, 1875;

U. Th Increase of atomic weights (2 times) Roscoe, 1874;

Rammelsberg, 187229

Mendeleev, 1869-719,10

a)Actually predicted by use of the periodic table and discovered later. b) M - atomic weight; d -

density (g/cm3); m.p./b.p. melting/boiling point (°C); changes of atomic weights from those

accepted in 1869.

1897-9825
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3. Periodic Systems in Other Sciences
The beauty of the periodic system of the elements exerted a strong influence on other
sciences. Indeed, there are a lot of objects that can be generally considered as
'elements'. One can consider ions, atomic nuclei (isotopes of elements), elementary
particles and quarks as examples of such objects in physics. In addition, in many
descriptive disciplines (mineralogy, organic chemistry, botany, zoology) there are
enormous numbers of closely related objects that require natural classifications. In
many cases scientists have developed classifications - with the periodic table in
mind as the standard of excellence. Some attempts have been made to generalize the
meaning of the terms 'natural' and 'periodic' systems in order to develop a general
methodology of classification in science and to consider the system of chemical
elements as an important special case.

3.1 Some Known Criteria for Natural Systems
An early attempt to give general criteria for natural systems was made by the
entomologist and philosopher Lyubischev. It was his dream (first conceived in the
1920s and later developed in the 1970s) to construct a periodic system of living
organisms.31 Although he did not achieve his general goal, Lyubischev formulated
many stimulating ideas about natural systems; his papers on general taxonomy and
classification,32 as well as his philosophical works, pointed out their true value.33

According to one of his definitions, 'a system should be considered as natural if the
position of an element in it reflects the maximum number of elemental properties.'
In spite of some vagueness in this definition, it opens up the possibility of developing
new systems and improving existing ones. It is easy to see that the periodic table is
an excellent example of the validity of this general principle; other examples are also
discussed below.

Another important criterion for natural systems was developed in the 1970s by
Urmantsev, another Russian biologist. He discussed some original parallels between
isomerism in chemistry and in biology (e.g. the structural peculiarities of
non-identical leaves on the same tree or of petals in the flowers in his rather
intriguing 'periodic system of flowers').34 Urmantsev seems to be the first to have
considered the special case of 'systems of objects of a given genus', and he tried to
formulate some of their general properties.34-35 One important principle is that any
element of such a system should possess the property of polymorphism. (Originally,
the phenomenon of polymorphism was observed in mineralogy; there, it is the
property of a mineral compound to exist in more than one crystalline form, for
example, octahedral and cubic.)

Considered globally, this principle of polymorphism reflects the idea that any
kind of element (that is claimed to be a simple one) may be complex; indeed any
'simple element' may actually consist of simpler parts. A triad of concepts - the
nature, number, and interrelations of these smaller parts - should be taken into
account, otherwise the polymorphism will appear as an inexplicable property. In the
simplest case polymorphism may be caused by different geometrical interrelation of
elemental parts. Urmantsev illustrated this principle in his table of flowers, where the
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number of petals is fixed, but the petals can be arranged in a geometrically different
manner.34 Chemical isomerism36,37 is a good example of such global
polymorphism; the term 'isomerism' (in a broader sense) has also been accepted in
biology38 and nuclear physics.39 An example of polymorphism for the elements in
the periodic table is the well-known phenomenon of allotropy40 (e.g. the existence
of the element carbon as diamond or graphite). Yet again, isotopes, ions, and excited
states of atoms also illustrate the possibilities of different polymorphism types for
elements.

3.2 Criteria for Periodic Systems
Dias has attempted to formulate general criteria and properties for a periodic table
set.41 In attempting to classify polycyclic benzenoids and their analogs (see Section
4.1.1), Dias came up with a periodic system of aromatic hydrocarbons. Making
parallels between his tables and the periodic chart, Dias proposed the following
criteria for a periodic table set:

1. It is a partially ordered set (i.e. it obeys reflexivity, antisymmetry, transitivity);
2. It is two-dimensional and of infinite extent; and
3. It complies with the triad principle (any central element has a metric property

that is the arithmetic mean of two oppositely adjacent elements).

Also among the properties of a periodic table set mentioned by Dias are
(i) hierarchical ordering, (ii) periodicity of at least one invariant, (iii) edge effects
(i.e. elements on at least one two-dimensional edge have values for various
properties which are more extreme than those for elements chosen at random), and
(iv) the greatest difference is frequently to be found in the properties of the smallest
element.

3.3 Periodic Systems of Subatomic Objects
Elementary particles. High-energy physics has resulted in the discovery of a great
number of 'elementary' particles. There are three leptons, each with its antiparticle;
each of these six objects has its own neutrino. Then there are mesons, which were
originally defined as having masses between that of the electron and the proton but
now defined on the basis of their having integer spin. These mesons come in groups
of one, or two, or three with almost the same mass value. As groups having larger
and larger masses are studied, some of them appear to be very similar to less massive
groups; these particles are excited forms of the least massive particles. Thus, there
are hundreds of mesons but only a few are in their ground state. Exactly the same
situation pertains to baryons, which are particles with masses equal to (or greater
than) that of the proton and with half-integer spin. Some of their groups even have
four particles. Two important invariants - the average charge and the isotopic spin -
can be used42,43 to arrange multiplets of elementary particles in periodic tables. In
Figure 4, such a grouping (which pertains to the SU(3) version of the standard model
of fundamental particle physics) is shown for some mesons (Figure 4, left) and



Figure 4 Left: The Jp = 0" multiple! of mesons. Right: The Jp = 1/2+ multiplet of
baryons. I3 is the isotopic spin and Y is the hypercharge; both of these
quantities are related to the charges of particles and of groups of particles.
The Greek letters refer to various elementary particles
aside from the neutron and proton. The signs indicate whether the particles
have positive, neutral, or negative charge with magnitudes equal to that of
the electron; a bar over the particle symbol indicates that it is an
antiparticle, (Taken with permission and adapted from ref. 43.)

Isotopes. The classification of isotopes is another well-developed field.1 i-'2'44'45

The number of known isotopes is over 1700 and exceeds the number of known atoms
by a large factor. It was mentioned early on that the stability of isotopes is connected
with 'magic numbers' of nucleons: protons, neutrons, and sometimes their sum. In
this sense, there is a parallelism between stable nucleonic configurations (the
isotopes with the magic numbers 2, 8, 20, 50 etc.) and atoms with closed shells
(magic numbers 2,10, 18 etc., for atoms of the noble gases). The periodic system of
isotopes can be expressed in several alternative ways, as in Figure 5. One such table
proposed in the 1960s by Selinov45 and designed as a seven-colored wall-chart is
shown in Figure 6. The bold zig-zag line on this table that connects black squares
(stable isotopes) reflects the idea of periodicity.

Ions. One intriguing problem that arises from the periodic table of atoms is the
possibility of constructing periodic systems of ions.46 An atom can be completely or
partially ionized to a cation by removing electrons, or transformed into an anion by
the addition of new electrons. In Figure 7 the energy required for a few consecutive
ionizations of atoms is plotted against the atomic number. One can see that the curves
are periodic, and hence it is possible to construct periodic tables for mono-, di- and
multi-charged cations. If we look at the dispositions of the maxima and minima of
the curves and compare them with those for atoms, it becomes evident that the magic
numbers of electrons for ions are the same as for neutral atoms. Therefore, the
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baryons (Figure 4, right) in their ground states. The periodicity here is that such
diagrams are repeated at higher masses for excited particles. In theoretical physics
such diagrams can be constructed from first principles, namely by a combination of
analogous diagrams for quarks, which are sub-elementary particles.



Figure 5 Possible periodic tables of the isotopes; vertical lines separate the periods in
the Valley of Stability. (N - number of nucleons, Z - number of protons).

number of electrons (but not the charge on the nucleus) is responsible for the
periodicity of ions.

4. Molecular Periodicity
Progress in periodic classifications of objects smaller than atoms leads to the
fascinating question: is it possible to apply the idea of periodicity to molecules? Can
we construct, analogously to the chart for atoms, a periodic chart for molecules -
organic, inorganic, and organometallic molecules? Can we imagine a natural system
where the role of an 'element' can be played by a molecule, so that the position of an
object in such a system reflects the data for a maximum number of the molecular
properties?

Such ideas have been around for a very long time and are related to the general
problem of classification of chemical compounds; they have in fact stirred the
thoughts of many scientists since the middle of the last century. The French chemist
Gerhardt in the 1840s proposed playing a game of chemical 'patience' with cards
that would place homological and heterological series of molecules in a natural
arrangement.47 He then added smaller and smaller pieces of paper (isological series)
on every card of his patience game to classify compounds in formal
three-dimensional space. The Russian chemist Butlerov was seriously interested in
Gerhardt's idea, but failed to integrate isomers into such a three-dimensional system,
and so finally criticized and rejected it.48

Many contributors to the Periodic Law (in particular, Dumas, Pettenkofer, and
Newlands)49 have described parallels between triads of the elements and members
of homological series of hydrocarbons differing by a CH2-group (see also Section
4.1.1). In 1862, Newlands presented two of many tables exhibiting the composition
and mutual relations of organic substances and serving as 'a map of organic
chemistry' (see49c). The tables show, along vertical, horizontal, and upper-left/
lower-right and upper-right/lower-left diagonals, bodies differing by H2, O and CO2

(among others) or bodies in which one such symbol is replaced by another. Later,



Figure 6 The periodic table of isotopes (the wall-chart of I. Selinov). The running axis (1 to 104) indicates the element. The perpendicular
axis indicates the excess of neutrons over protons. The black triangles indicate the magic numbers of protons.



Figure 7 Successive ionization potentials of atoms plotted against atomic numbers
can be used to construct a period table of ions.

Pelopidas mentioned parallelism between series of organic radicals with decreasing
degree of saturation and elements in rows (see ref. 49d). Thus, the saturated
methylammonium radical CH3NH3 is analogous to an alkali metal, while the
unsaturated radical CN behaves similarly to a halogen.

After the discovery of the Periodic Law, many attempts - some intuitive and
others based on a solid mathematical and physical background - have been made to
study the problem of molecular periodicity. The present chapter sets itself the goal
of reviewing the general methodology, the history, and recent progress in this
interesting field. Early results on this topic can be found in the authors'
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publications43,50,52 and in the monograph of Gorsky.53

4.1 How to Talk about Molecular Periodicity
Let us first distinguish the local and the global approaches to molecular periodicity.
The local approach seeks to classify a separate (finite or infinite) subset of
molecules; the global approach seeks to classify all sets of possible molecules. The
local models of molecular classification are more widespread, are characterized by a
great diversity of viewpoints, and in some cases their authors refer to such models as
'periodic tables'. Let us consider a few impressive examples of such local tables
from organic chemistry and from inorganic chemistry.

4.1.1 Local Models: Examples of Diversity
Periodic table of hydrocarbons. As we mentioned above, a lot of parallels between
the elements and hydrocarbons were discussed in nineteenth century.49 One elegant
attempt to express this analogy in graphical form was made by the Russian
Morozov. In his table of hydrocarbon radicals (Figure 8) the homological
hydrocarbons are arranged in columns in the same way as are similar elements in the
periodic chart. Moreover, he drew many curious analogies between the organic
radicals and corresponding elements (parallelisms in atomic and molecular mass,
maximal valency, and acidic and basic properties of corresponding hydroxides). It is
less known that in the first version of his table (distributed in 1885)55 Morozov
predicted the existence of a whole column of 'nonvalent' elements (appearing as
analogs of the paraffins), calculated their atomic weights (namely, 4,20,36, and 82)
and proposed their arrangement in the periodic table (see also ref. 10c, p. 135, and
ref. 12, p. 51). Although the idea was criticized and rejected by contemporaries,
nevertheless, a decade later,24,25 these elements were found: the noble gases! It is
interesting that Morozov wrote his giant book in the Schlisselburg Fortress during
his 25 years of incarceration for his pamphlets against the Russian Czar's family.55a

The book with the table, therefore, finally appeared in 1907 (long after the discovery
of the noble gases); when Mendeleev read it, he was so impressed with its content
that he immediately had Morozov appointed to a full professorship: the silver lining
in the cloud of his imprisonment!

Another model called the 'Natural System of Hydrocarbon Compounds' was
proposed in 1922 by Decker.56 The system was simply a two-dimensional plane with
the numbers of the carbon and hydrogen atoms on the axes. Such oversimplified
classification, however, has appeared useful in comparisons of known types of
organic homology (vinylogy, phenylogy, benzannelation etc.) and the design of
novel types of homological series.

Periodic table of functional groups (paraelements). In the 1980s Haas, in trying
to explain the halogen-like properties of the pseudohalogen groups (e.g. CF3, SCF3,
CN, NCO, N3) proposed57 the so-called 'element displacement principle'. In his
model, certain radicals w.ith element-like behavior (the paraelements) can be
designed by the formal addition of x ligands (atoms or other paraelements) to
prototype p-elements with a corresponding shift of x places to the right within the



Figure 8 Formal analogy between the periodic tables of elements and hydrocarbon
radicals due to Morozov.54 The title: 'Two periodic systems'; subtitles:
I-The system of normal aliphatic hydrocarbons (key to the system -
hydrogen); II - The system of modern mineral elements 'archeohelides'
(key to the system - helium). Bottom numbers: valency in respect of
halogens and metals.
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period of the periodic system. The paraelements, therefore, can be arranged into a set
of periodic tables (Figure 9). Haas proved analogies between the elements and
paraelements by means of extensive physical data (NMR shifts, dissociation
enthalpies, electronegativities), structural features (interchangeability in known
structures) and examples of chemical similarity. He is also currently applying this
concept in the practical design of novel inorganic molecules and functional groups.

Periodic table of polycyclic hydrocarbons. Benzenoid hydrocarbons form an
interesting series of molecules with delocalized bonds; it is easy to imagine such
structures if one looks at a honeycomb with some cells full of honey. Dias has
recently discussed41 many regularities within this class in terms of their periodic
table (see Section 3.2). The parameters used to construct such a table are the internal
structural features of fused polygons (Figure 10), and such parameters turn out to
reflect many aspects of similarity among polyaromatic hydrocarbons.

4.1.2 Early Attempts of Global Classification
The periodic tables just described are elegant examples of local periodic tables. We
now discuss the equally interesting approaches to a global periodic system of
molecules. Two names should be mentioned in relation to the history of global
molecular classifications. The first is the Russian Shemyakin who published in the
1930s a series of papers58 under the title Natural Classification of Chemical
Compounds. The other is the Pole Gorsky who developed in the 1970s the
'morphological' classification of compounds.53,59

Shemyakin proposed the 'molecular number' - that is, the sum of the atomic
numbers of all the atoms in a molecule (actually the total number of electrons) - as
the basis of his classification. Evidently, such an approach immediately runs up
against polymorphism: there is vast growth in the number of isoelectronic molecules
with increase of molecular number. As a result, Shemyakin had to introduce
additional parameters (such as the number of hydrogen atoms and the 'characteristic
structural number' for isomers), and he used them to draw three-dimensional
structure-property correlation charts for both organic and inorganic molecules (as in
Figure 11a). Unfortunately, such charts include many senseless combinations of
atoms and, therefore, it is somewhat difficult to use them in practice. Nevertheless,
Shemyakin discussed at least nine classes of table (isostructural and isoelectronic,
isoelectronic but not isostructural, etc.) that he declared to be the projections of a
unique table of all molecules. (An example of a building block of such a table is
presented on Figure 11b.) One result of his classification was his formulas to
calculate boiling points of alkanes from the boiling points of the noble gases.

In the approach of Gorsky, inorganic molecules are classified by two
parameters, ev and ez, that reflect changes of molecules in redox and acid-base
reactions, respectively. The first number is the so-called 'normalized' oxidation
number of the central atom (or of a few atoms), and the second number is the total
charge of the ligands around the central core(s). Having used these parameters as the
coordinates, Gorsky constructed many classification tables for different inorganic
molecules (e.g. for oxy-acids of phosphorus and sulfur), drawing either concrete



Figure 9 Haas' periodic system of functional groups. The first and second diagrams
show how Haas generalized Grimm's hydrogen displacement principle by
the substitution of fluorine for hydrogen; he names these species
'paraelements'. The third and fourth diagrams show how an entry in the
first diagram, CF3, can be substituted for the fluorine in the first two
diagrams. Haas designates the resulting species 'first-order derivative
paraelements'. The fifth and sixth diagrams show how an entry in the
fourth diagram, CF3S, can be substituted for the CF3 in the third and fourth
diagrams. Haas designates the resulting species 'second-order derivative
paraelements'. The seventh diagram shows what happens if ligands like
oxygen, sulfur, or nitrogen are used; displacements of two or three groups
must take place. The last diagram shows what happens if various of the
paraelements of the seventh diagram are substituted with the appropriate
displacements. The diagrams are from ref. 57; used with permission.



Figure 10 Formula periodic table for benzenoid polycyclic aromatic hydrocarbons due to Dias.41 N c and NH are the numbers of carbon
and hydrogen atoms, respectively; ds is the net number of disconnections among the internal edges (see ref. 41); NIc is the
number of internal carbon vertices in the structures. (Used with permission.)



Figure 11 Early attempts at global classification by Shemyakin, (a) and (b),58 and
Gorsky, (c) and (d):59 (a) three-dimensional graph with the number of
hydrogen atoms and molecular number on the horizontal axes and boiling
point on the vertical axis, (b) and (c) examples of building blocks for more
complete classifications, (d) three-dimensional graph with parameters ev

and ez (see text) on the horizontal axes and enthalpy on the vertical axis.
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formulas or general structures, as in Figure 11c. He also illustrated the usefulness of
such tables by constructing three-dimensional charts capable of predicting the
thermodynamic properties of molecules, as shown in Figure 11d.

The above-mentioned global classifications have been neither adopted nor used
by the general chemical community. Let us now try to analyze the underlying
problem here.

4.1.3 Global Models: What to Classify and Why?
In order to clarify the problem of global molecular periodicity, we first attempt to
answer some simpler questions: what are the objects and the goals of such a
classification? In other words: what should we classify and why? .

What to classify'? In the case of elements we have objects (atoms or their
condensed phases) and measurable data (microscopic and macroscopic properties)
that form the basis for their periodic classification. In the case of molecules - if we
consider them as the 'elements' of an alternative classification - problems may
appear both in relation to the objects themselves (the existence and stability of an
isolated molecule), their relation to the condensed phase, and even the possibility of
measuring molecular properties.

Suppose we decide to compare only isolated molecules. In such a case we would
still need to define clearly the meaning of the term 'molecule' in relation to the
condensed phases. We usually define a molecule as an aggregate of chemically
connected atoms (with given atomic numbers), that can be separated as an entity
from surrounding media because of a greater stability - greater internal
(intramolecular) forces than external (intermolecular) ones. Of course, the difference
between such intra- and intermolecular forces depends on the nature of the atoms.
On the other hand, in many cases this difference may not be large (say, for ionic
crystals, alloys, or atomic lattices such as diamond), and it is somewhat difficult to
identify a 'molecule' in the condensed phase.

The problem can be illustrated by use of the well-known60 'Grimm Tetrahedron'
(Figure 12). This diagram symbolically uses the four vertices of a tetrahedron to
represent the four main types of bonding in solid chemical compounds - i.e. metallic,
ionic, atomic, and van der Waals. The six edges between these vertices correspond
to the intermediate types of bonding. It is clear that the idea of isolated molecules can
be most naturally applied only to one vertex of this diagram (the central one in Figure
12, where the intermolecular interactions are the weak van der Waals forces). Such
compounds correspond to typical organic and (simple) inorganic molecules with
covalent bonds. For the remaining types of bonding, the corresponding 'molecules'
(formula units) may be unstable to the processes of self-association, and so lose their
identities in the condensed phase under usual conditions. In such cases, special
efforts must be made to vaporize the compound and investigate the structure and
properties of its isolated molecules.

Among the set of theoretically possible molecules, those with covalent bonds
predominate over those with the other three types of bond under typical 'wet
chemistry' conditions. This suggests that (i) a global molecular classification should



Figure 12 Different types of intermolecular bonding represented by chemical
compounds on the vertices and edges of the 'Grimm tetrahedron' (see text).

be first addressed to covalently-bonded molecules, and that (ii) the problem of
'empty places' may turn out to be unavoidable for a global system until more
representative data can be collected. This pronounced asymmetry between the ideal
objects of classification and real molecules hindered for many years significant
development of the entire area of molecular periodicity. Fortunately, in the past few
decades, short-lived species and especially clusters have become more available for
experimentalists. Major progress in spectroscopy and mass spectrometry, and the use
of lasers and the matrix isolation technique, open up the possibility of studying their
properties systematically. The development of quantum-chemical calculations
provides an alternative route to the estimation of the properties of unstable molecules
and clusters of almost any imaginable combination of atoms.

Why classify? There are several reasons. (i) A pragmatic aim: to arrange
molecules in naturally related series in order to calculate any desired molecular
property by interpolation (or extrapolation) from the known properties of their
neighbors and to assist in the compression and computerization of immense
quantities of data, (ii) An educational goal: the possibility of discovering qualitative
chemical trends of molecules directly from a molecular chart, (iii) A philosophical
objective: to seek yet another illustration that the whole is larger than the sum of its
parts. A molecule is not the arithmetic sum of its atoms; although a large number of
molecular properties can be treated as additive, many are not. (iv) A psychological
reason based on scientific and human curiosity: why not try?

4.1.4 Atomic Periodicity Versus Molecular
Another related question is whether it is necessary at all to separate molecular



periodicity from atomic periodicity. Although the periodic law was formulated to be
equally valid for both elements and their compounds, the proof was actually limited
to the series of binary compounds (e.g. the oxides, hydrides and halides) of a given
row or column. In such simple cases molecular periodicity can definitely be reduced
to the atomic case, a viewpoint often reflected in chemistry textbooks. This
approach, however, immediately fails if one looks at the relation between different
classes of binary compounds (e.g. NaCl and CaO), or between binary and ternary
compounds (e.g. NaCl and K2SO4), or between an inorganic and an organic
substance. For such cases molecular periodicity, if shown to exist, may be only
indirectly connected with atomic periodicity (or not follow from it at all). Hence, an
alternative methodology, capable of comparing any pair of molecules, is required.

4.2 Problems with Global Classification and their Avoidance
4.2.1 The Infinity Problem
The first serious problem directly associated with the idea of molecular periodicity
is the infinity problem. Indeed, in contrast to the finite number of atoms (about 100),
the number of possible molecules constructed from them is actually infinite, and
hence we can never construct a wall-chart for all molecules, since there is no infinite
wall. (Of course, this assertion assumes that there is no limit to the numbers of atoms
which we can imagine to be in molecules!)

How can the problem of infinity be resolved? We see two possible solutions: to
separate the infinity into finite sets (of which there will be an infinite number) or to
separate the infinity into 'smaller' infinities (of which there will be a finite or infinite
number).

Infinite number of finite sets. The number of all imaginable molecules is infinite,
but the number of diatomic or triatomic molecules is finite. The same is true for any
case when the number of atoms in the molecules is fixed. So, a global classification
can be considered as a step-by-step constructing of the local systems of N-atomic
molecules and some comparisons of such systems. Analogously, we can separate
infinite sets of molecules into (say) finite subsets of isovalence-electronic or
iso-inner-electronic molecules.

'Smaller infinities'. Let us take a familiar example from mathematics: the infinite
set of natural numbers can be separated to subsets of odd and even numbers. In such
a case one infinity breaks down into two infinities, each with special peculiarities.
Similarly, we can develop some finite or infinite number of important features to
separate one infinite class of molecules from another. A good example from
chemistry is the separation of the hydrocarbons CnH2n+x according to the saturation
degree x (as in the Beilstein handbook). Another example is the classification of
planar cyclic delocalized systems according to the Huckel rule61 (4n or 4n + 2
pi-electrons). Analogously, the boron hydrides (boranes) and carboranes can be
arranged according to Wade's electron counting rules of (n+k)-electrons.62 Of
course, these rules are valid only for certain local classifications; analogous rules for
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global classifications still need to be developed.

4.2.2 The Multidimensionality Problem
Theoretically, we can imagine one classification of molecules as a hyperspace in
which the number of axes is equal to the number of elements, and where the
calibrations on the axes will be the numbers of the appropriate atoms in the molecule.
(Thus, Decker's system for hydrocarbons56 will be a plane in this hyperspace.)
However, this classification results in a complete loss of visual clarity and is
therefore unacceptable. The human eye is able to perceive only two-dimensional or
three-dimensional pictures and, therefore, any attempt to compare molecules by such
pictures may lead to degeneracies. In such a situation it is a requirement that any
molecular 'chart' be as instructive as possible. Development of computer software
opens new horizons for perceiving and manipulating objects in multidimensional
spaces, and this may turn out to be the most promising way to resolve the problem
of many dimensions.

4.2.3 The Polymorphism Problem
Seeking for a natural system of molecules can be considered as a search for a finite
set of natural descriptors, capable of distinguishing between any pair of molecules.
Evidently, such descriptors should be capable not only of distinguishing the
molecules of different constitution, but also of discriminating among the isomers of
a given formula. It should be mentioned, however, that the isomerism phenomenon
in chemistry is the worst case of polymorphism of natural objects. Indeed, the vast
growth in the number of isomers with an increase of number of atoms in organic
molecules is well known (the combinatorial explosion),36'63 Thus, the hydrocarbon
C30H62 has 4,111,846,763 isomers (see, e,g.,36b). Another aspect of this problem is
the polymorphism (using the word in a most general sense) of isomer types.36'37

Examples of such types are alternative arrangements of atoms in the skeleton (as in
HCNO and HNCO), topological differences of structures (as in the cyclic and acyclic
structures of O3 and as in the differently branched skeletons of butane and
iso-butane), differences in geometry (as in cis- and trans-, and syn- and
anti-isomers), conformation (as in rotamers), and chirality (as in enantiomers).

In spite of some pessimism caused by such a gloomy succession of
polymorphism problems, modern chemistry has developed various approaches and
techniques in order to distinguish isomers of different types. Let us consider only one
illustrative example: how to distinguish by natural numbers two isomers with a
different 'degree of branching' - butane and isobutane. A very crude image of a
molecule is its presentation as a set of atoms and 'rubber' bonds. More strictly
speaking, skeletal structures of molecules can be represented by graphs -
mathematical objects that are sets of points (vertices) connected together by lines
(edges).63 Atoms of a molecule can be naturally associated with the vertices, and the
bonds with the edges, of a graph. In mathematical chemistry, molecular structures
are often presented without terminal hydrogen atoms as so-called
'hydrogen-suppressed graphs'. Such graphs for butane and isobutane structures are



Figure 13 Distinguishing between butane isomers. Initial structures (a) are changed to
their hydrogen-suppressed graphs (b). The latter are compared with the
graph of propane in (c). The number of propane fragments found in the
isomers is different, (d).

another by comparing them with the graph of propane - the previous member of the
homologous series (Figure 13c). One can conclude that the structure of propane can
be found twice in the structure of butane, and three times in the structure of isobutane
(Figure 13d). These numbers - 2 and 3 - can be considered as the simplest numerical
parameters (topological indices) that distinguish the two isomers.

Such topological indices can be defined in quite different ways; they may then
have more or less discriminative power, and they may correlate with different
physical properties of molecules.36'63 It is also true that various combinations of
different indices can be used. A discipline that studies this area - the Quantitative
Structure-Property Relationship (or QSPR) approach - is now a rapidly developing
branch of chemistry.64,65 Methods have recently been put forward in this field that
are directed at distinguishing between geometrical isomers. We have given special
attention to this aspect of isomerism in order to emphasize that at least one of the
above mentioned problems of global polymorphism may be avoided.

Finally, we conclude by observing that the paradigm of global periodicity is not
entirely hopeless. The history of chemistry is full of intriguing empirical
observations and generalizations that may help us to avoid the problems discussed
above. Moreover, as we shall show later, chemists do have tools not only for natural
distinguishing of dissimilar structures, but also for the natural ordering of chemically
similar molecules.

4.3 Choice of Global Similarity Parameters: Importance of the Electron Count
Any classification implies an arrangement of objects into classes according to their
similarities and dissimilarities. The problem of similarity in chemistry has attracted
special attention in the past decade, and a classic book65 discusses different aspects
of this problem. Of course, any qualitative conclusion on the similarity or
dissimilarity of two molecules might be arbitrary, though chemists have discovered
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presented in Figures 13a,b. These two structures can easily be distinguished from one
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some parameters that are of major importance for molecular similarity studies.
In an effort to determine useful parameters for molecular classification, it might

seem reasonable to assume that the origin of molecular similarity lies in atomic
similarity. As we discussed above, any atom has two invariants responsible for its
similarity with other atoms. These are its column (group) number and its row
(period) number, and these two numbers reflect the numbers of valence and inner
electrons in the atom. Modern molecular orbital theory treats molecules somewhat
analogously to atoms; it also separates the electrons in a molecule into valence and
core electrons. These two key atomic invariants - the number of valence and of inner
electrons, therefore, can be considered as transferable parameters applicable both to
atoms and molecules. Consequently, the total number of valence electrons (Zv) and
the total of inner electrons (Zs) of molecules could serve as promising parameters to
establish molecular kinship. The number of atoms (N) in the molecule is another
important and simple parameter.

'Vertical' isovalency. The isovalency of atoms of the same group often causes
structural and chemical similarity in a series of related molecules formed from them.
Thus the series of the halides in group five - binary compounds (such as NF3, NCl3,
PF3, PCl3) or mixed derivatives (such as NF2Cl, PFC12, PFClBr) - are isovalent and
differ only in their inner shells. In such cases the entire family of molecules can be
represented by its isovalence type by simply changing the atomic symbols to the
appropriate number for the group of elements in the periodic table. In the examples
of fifth-group halides just discussed, Zv = 26 = 5 + 7 + 7 + 7 and the isovalence type
(which is actually the 'chemical formula' of the entire class) is 5777 or 5(7)3.

'Horizontal' isovalency. The isovalency of molecules may arise not only from the
'vertical isovalency' of atoms in groups of the periodic chart, but also from the
'horizontal isovalency' of atoms and corresponding ions from the same row. The
general rule is that similar substitutions in.the isovalent series provide isostructural
molecules. Thus, we can take- the series of ions Be2+, B3+, C4+, N5+ (isoelectronic
with the helium atom) and add a fixed number of ligands such as H- or F - . In this
manner the structurally similar families of tetrahedral hydrides (BeH4

2-~, BH4
-, CH4,

NH4
+) or fluorides (BeF4

2-, BF4
-, CF4, NF4

+) may be obtained. Analogously, we
could use different ligands (e.g. nitrogen, as in the linear anions NBN3-, NCN2-,
NNN- or oxygen, as in the triangular anions BO3

3-, CO3
2-, NO3

-). We can also start
from another series of ions (e.g. ions C4-, N3-, O2- that are isoelectronic with Ne and
give pyramidal structures CH3

-, NH3, H3O
+ with a proton as the ligand) to yield ever

more new series of isostructural molecules.
Comparing the structures of isoelectronic molecules obtained from 'horizontally

isoelectronic' ions (as in the examples above), one can conclude that their difference
can be alternatively considered as the result of an imaginary addition (or removal) of
a proton from the nucleus of the central atom of the molecule. Thus, we can view the
series BO2

-, CO2, NO2
+ as the result of the addition (removal) of a proton to (from)

the central carbon atom of CO2 rather than as the result of addition of two O2-
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ligands to the isoelectronic ions B3+, C4+, N5+. (Long ago Bent, having reviewed
many such series, proposed the apt term 'alchemical' for such imaginary proton
shifts.66) This idea can be generalized and applied also to the ligands or, broadly
speaking, to any heavy (non-hydrogen) atoms of more complicated structures. Thus,
we can get the linear ions ONO+ and NNN- by such addition (removal) of a proton
to (from) terminal ligands of the linear molecule NNO or obtain the hexagonal
pyridinium cation from benzene.

Isosterism. Perhaps the most intriguing and surprising result is that molecular
similarity appears not only via imaginary additions or removals of protons, but also
in the mental 'internuclear rearrangements' of protons between the heavy nuclei of
the same molecule. Thus, a consistent shift of protons among the heavy atoms of
NNO leads to the isostructural family of linear OCO, FCN, FBO, FBeF molecules.
This phenomenon - called isosterism - was first described in the 1920s by
Langmuir,67 who observed pronounced similarity in the macroscopic properties of
CO and N2, and of NNO and CO2; another frequently cited pair of isosteres is
benzene and borazene, again with very close physical properties. The isosterism
principle has proved its usefulness both in chemical education and in the practical
search for novel classes of molecules.66-68 Isosterism is considered to be responsible
for the isomorphism of crystals, the constitution of alloys (Hume-Rothery's phases)
and the similarity in spectra of isoelectronic molecules.

Protonation and/or deprotonatton. The cited examples underline the unique role
of the proton in deciding on the similarity between molecules of different
constitution. Unlike other particles, the proton has two symbols (p or H+), indicating
that it is simultaneously an elementary particle of physics (symbol p) and an
important 'molecule' of chemistry (symbol H+), responsible for the usual acid-base
properties of chemical compounds. A well-known chemical characteristic of the
proton is that its addition or removal as a ligand (as in acid-base processes) again
only slightly perturbs the initial molecular structure. Indeed, the molecule of
ammonia NH3 (which is almost tetrahedral with one vertex occupied by a lone pair)
can be protonated (to form tetrahedral NH4

+) or deprotonated (to form the amide
anion NH2

-, a tetrahedron with two vertices occupied by lone pairs) with
approximate conservation of initial structure. Exceptions appear only if there is
another driving force (such as delocalization or aromaticity) that tends to change the
geometry of charged species. Analogously, tautomerism - the chemical shift of a
proton from one heavy atom to another in such a way as to leave the atomic census
unchanged (as in HNCO and HOCN or in the C- and O-forms of the acetoacetic
ester) - in most cases conserves the initial skeletal geometry of the molecules.

Grimm series. Invariance of the structures of isoelectronic molecules toward both
imaginary and actual proton shifts can be also illustrated by the superposition of such
shifts. Grimm in the 1920s first drew attention to the fact that structural similarity of
molecules exists in the special isoelectronic series that have hydrogen as the variable



atom.69 Grimm illustrated his 'hydrogen displacement principle' by considering
both neutral molecules (e.g. Ne, HF, H2O, NH3, CH4) and radicals or functional
groups (e.g. Cl, SH, PH2, SiH3). (It is interesting that in the 1930s there was a sharp
controversy (see refs. 58b, 58c) between Shemyakin and Grimm over credit for the
discovery of this 'hydrogen displacement'; Shemyakin considered this principle as a
particular case of his nine tables, see above.)

Evidently the relationship in the Grimm series is the consequence (or
superposition) of imaginery ('alchemical') and chemical proton shifts. For example,
in the simplest pair (Ne -> HF), the proton is (i) taken from the nucleus of a heavy
atom as the 'physical' particle (Ne->F - + p), then (ii) is reconsidered as the
'chemical' particle (p=H+), and (iii) is retained as a ligand by formal protonation of
the anion F - , This procedure is equally applicable to molecules with one or more
heavy atoms (cf. the relationship between the structures O=C=O, HN=C=O,
H2C=C=O, and H2C=C=CH2 or between isobutene and F2C=O).

It should be emphasized that the local environment of a heavy atom in a
molecule appears to be almost insensitive to the chemical and imaginary addition or
removal of protons. As a result, the entire molecular skeleton around heavy atoms
also remains almost unchanged toward such proton shifts, as well as toward
internuclear (isosterism) or intramolecular (tautomerism) rearrangements of protons.
Since the proton is a unique chemical particle bearing no electrons, the invariance of
the electron number may be considered as the parameter responsible for the skeletal
similarity of isovalent families. These early conclusions, later intensively and
extensively studied in different fields of inorganic and organic chemistry, have been
met with a rather limited number of counterexamples. For the quantum-chemical
aspect of the problem and analysis of the known exceptions, see, e.g., the review in
ref. 70. Isovalency, therefore, can be treated as a generalization of elements'
similarity in groups that is quite naturally applicable to molecules.

5. The Art and Logic of Equalization: Classification of Isosteric Ensembles
5.1 General Remarks
Surprisingly enough, the isovalency principle has usually been applied only to local
classifications of molecules. How can the principle be used with respect to global
molecular periodicity? The early Renaissance philosopher Nicolaus von Kues
(Cusanus) said71 'equality foregoes inequality.' Let us take this expression as our
motto and declare all molecules with equal numbers of valence electrons Zv to be
equal objects. Of course, we ignore any differences between the isomers, isosteres,
and molecules differing by the chemical and 'alchemical' (see Section IV.3) shifts
of protons. As we mentioned above, in many cases there are very good chemical
reasons why we are able to neglect such differences.

By definition we neglect any difference in the inner shells, and consider as
equals the members of such sets as Li2O and Cs2S, and F2, I2 and BrCl. This
procedure is somewhat similar to approximating the entire periodic chart of elements
by only one of its periods, say the one that contains the elements from Li to Ne. This
approximation makes sense only if elements from the main groups are considered;
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hence we also limit ourselves to molecules constructed from atoms of the main
groups. Having arranged all molecules into isovalent series, we may order the series
by increasing the Zv value. Actually, in this way, we project a multidimensional
space of all molecules on to one-dimensional space or a line.

Of course, the number of valence electrons has rather poor discriminative power.
The degree of degeneracy (or polymorphism), that is the number of molecules with
the same Zv, quickly increases with increasing of Zv. However, we may ask: what is
the extent of this degeneracy, and how many neutral molecules are theoretically
possible for a given Zv? To avoid the complexity of isomerism, let us ignore it, and
simplify the question thus: how many different molecular formulas are possible for
a given Zv? The question is still ill-defined, since the total of valence electrons does
not reflect the exact formulas but rather symbolic 'valence formulas', which we
called isoelectronic types. So, the only question we can ask is: how many
isoelectronic types exist for a given Zv?

The answer exists, and follows from the mathematical theory of numbers: the
number of isoelectronic types associated with any given Zv electrons is equal to the
number of partitions of the number Zv. The partition of a number Zv, is any unordered
sequence of numbers whose sum is equal to Zv; thus (2,2) is a partition of 4 since
2 + 2 = 4, and (3,1) or (1,3) are also partitions of 4 for the same reason. There are
only 5 distinct partitions of Zv = 4, and these partitions are (1,1,1,1), (2,1,1), (3,1),
(2,2), and (4). Therefore, there are exactly 5 isoelectronic types of neutral molecules
with 4 valence electrons. Since we identify the size of any part of the partition as the
group number of a main-group atom, it follows that the parts of a partition have
limited size, up to eight

The numbers of partitions (i.e. isoelectronic types) for the first seven Zv are as
follows:

Zv:

No. of partitions:

1

1

2

2

3

3

4

5

5

7

6

11

7

15

General formulas to calculate the number of partitions are rather complicated,
but they do exist;72 for specific cases one may calculate by hand or use a simple
computer program. In any case, the existence of a means to calculate the number of
isoelectronic types (partitions) as a function of Zv is very important. Its importance
lies in that, now, the problem of polymorphism (at least in respect to one of its
possible types) can be treated in a purely combinatorial sense. (Earlier, when we
deliberately admitted polymorphism into our classification, we had absolutely no
quantitative idea about the nature and degree of this polymorphism.)

Let us consider the additional and quite natural parameter, the number of atoms
N in the molecule. We can use it as the second axis, making our global classification
into a two-dimensional projection of a system of all molecules on the coordinate
plane (Zv,N). Every point on this plane contains a certain finite set of (isovalent)
neutral molecules with a fixed number of atoms, i.e. isosteres. Let us call such sets
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isosteric ensembles, and call the entire plane the Plane of Isosteric Ensembles.
The coordinates of isosteric ensembles in the Plane of Isosteric Ensembles lie

within boundaries. Thus, when increasing the number N along isovalent series with
a given Zv, we 'crush' larger parts into smaller parts. The maximum extent of this
crushing is an association of N protons (or alkali metals each with one valence
electron) and hence the maximum N for a given Zv is N = Zv. Analogously, being
limited by a maximum of eight valence electrons of any (main group) atom in the
molecule, we cannot have in an N-atomic molecule more than 8N electrons (as in an
association of N noble gas atoms), so the maximum Zv for a given N is 8N.
Consequently, all points of the (Zv,N) plane fall inside the sector bounded by lines
N = Zv and N - 1/8 Zv. Evidently, any line parallel to one of the coordinate axes (i.e.
isovalent and isoatomic families) should cross the region between these boundary
lines (Figure 14). The periodic table on this chart is simply the line N = 1 with eight
points.

Figure 14 A possible arrangement of isosteric ensembles on the Plane of Isosteric
Ensembles (shown by the gray area).

Since chemists consider the grouping of molecules into isosteric families to be
quite reasonable, the question arises as to the similarity and dissimilarity
relationships between isosteric ensembles. The Plane of Isosteric Ensembles (first
introduced by one of us in the 1980s50,51) seems to be just the answer needed to this
question. As we shall prove below, the Plane of Isosteric Ensembles is an important
pattern for molecular classification, since it (i) possesses a unique symmetrical
structure with respect to polymorphism, (ii) may be used for a qualitative dichotomy
of molecular chemical types, (iii) reflects key topological trends of molecular
structures, and (iv) obeys a kind of periodic law quite different from that of atoms:
we shall call it the law of 'hyperperiodicity', In other words, the Plane of Isosteric
Ensembles (in spite of its seeming simplicity) may serve as a source of novel
knowledge about molecular periodicity.

5.2 Regularities in the Polymorphism of Isosteric Ensembles
The first problem appearing in the model based on the Plane of Isosteric Ensembles
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is the polymorphism of isosteric types. Every isosteric ensemble has a different
'capacity' owing to the different number of theoretically possible isosteric types
(i.e. partitions). Let us estimate, at least qualitatively, how this capacity varies, say
along the N-atomic series. In a diatomic series, for instance, with an increase of Zv

this capacity first increases and then decreases. Thus, for Zv = 2, 4, 6, 8, 10, 12, 14
and 16, the capacities (i.e. number of partitions into two parts each no larger than 8)
are 1, 2, 3, 4, 4, 3, 2 and 1, respectively. These numbers of partitions are plotted
perpendicular to the ZV,N plane in Figure 15.

Figure 15 Regularities in the capacity of the isosteric ensembles along N-atomic
series. (The number of partitions is plotted against the (ZV,N) plane.)

The result is remarkable: the capacity along any isoatomic series is symmetrical
and is represented by a Gaussian-like curve. This peculiarity follows from the
combinatorial properties of partitions with parts of a limited size. The proof can be
found in any elementary course in partition theory (e.g. ref. 72).

This observation gives us at least two advantages. The first is that the degree of
polymorphism is small (and may even be neglected) for molecules at the beginning
and at the end of any isoatomic series; thus the discriminative power of Zv and N is
enough for such particular cases. The second is that polymorphism itself (at least,
with respect to the number of isosteres) appears to be a periodic-like phenomenon.

5.3 Chemical Trends: the Rule of Two Poles
Since the time of Plato and Aristotle scientists have spoken about the objects of the
universe in terms of binary opposites. In the chemical tradition opposites are also
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widely used, and one can easily recall such archetypal opposites such as:

(a) metals and non-metals,
(b) reductants and oxidants,
(c) acids and bases,
(d) electrophiles and nucleophiles, and even
(e) organic and inorganic compounds.

The first opposite (a) is related to the elements, while the other opposites (b), (c), (d),
and (e) are, of course, related to molecules and compounds rather than atoms and
elements. The opposite 'metals - non-metals' for elements is connected with their
disposition in the periodic chart (locations in the lower-left and upper-right corners
of the table, respectively). Is it possible to treat opposites from (b) to (e) among
molecules in relation to the dispositions of their isosteric ensembles in the Plane of
Isosteric Ensembles? Let us look at the Plane in a new way by placing on it concrete
examples of chemical formulas instead of partition symbols (Figure 16).

Even a quick review of the molecules arranged on the Plane of Isosteric
Ensembles gives an intuitively clear picture. On and near the lower-right boundary
of the Plane there are typical inorganic molecules with pronounced acidic properties,
strong oxidants, and/or powerful electrophiles. The upper-left region of the Plane, on
the contrary, is occupied by typical organic and organometallic molecules that are
reductants, strong bases, and/or nucleophiles. In other words, the key chemical
opposites (b), (c), (d), and (e) appear at different portions (or 'poles') on the plane,
the first being located near the boundary line N = 1/8 Zv, and the second close to the
boundary N = Zv. How can this 'two poles rule' be explained?

In order to prove that the observed duality is neither artificial nor accidental, let
us check the behavior of any partition with respect to variation of the N and Zv values
in the direction of both poles. It will be helpful to change the numerical presentation
of each partition to its equivalent pictorial form (known as Ferrer graphs in
mathematics and as Young diagrams in physics).72 The pictorial presentation simply
matches the size of every part in a partition by a set of points (squares) arranged
horizontally (size of parts) and vertically (number of parts), Figure 17 (left). The
number of squares in a row is equal to the numerical value of the part, and the number
of rows is equal to the number of parts in the partition.

As one may easily see in the right side of Figure 17, any shift down or to the right
necessarily causes an increase in the size of at least one part in the partition.
Conversely, every shift up or to the left always decreases the size of at least one of
the partition's parts. However, the size of a part is the atom's group number. The
atom's group number, in turn, reflects the element's electronegativity. Hence, the
upper-left part of the Plane of Isosteric Ensembles is populated with molecules from
electropositive atoms (smaller group numbers), and the lower-right part is populated
by molecules from electronegative atoms. Consequently, the dichotomy which we
noted on the Plane has a natural origin and can be explained by the use of partitions
and their relation to the electronegativities of atoms in molecules.



Figure 16 Arrangement of concrete molecules on the Plane of Isosteric Ensembles
and symbolic presentation of two chemical 'poles' at the boundaries of the
Plane. (Adapted from ref. 50.)

Theory of Numbers and Chemistry: More Interactions?
We may talk about the two poles in another manner. Consider a diagonal line on the
(ZV,N) Plane that starts from the origin. We may continuously vary the slope of this
line, thus covering any point on the plane. The variable parameter of the slope may
be simply the cotangent of this line, that is, the ratio Zv/N (i.e. the relative number of
valence electrons per atom). Small values of this electron-to-atom ratio correspond
to the organometallic pole, while large ratios (up to 8) correspond to the inorganic
pole. This ratio, of course, is insensitive to the extent of self-association, (i.e. it does
not distinguish between ethylene and polyethylene, or between diatomic NaCl and
hypercluster [NaCl]x), and therefore it is one more useful classification parameter.

This ratio is especially useful for classifying different homological series where
the members differ by the same group (a group like CH2, phenylene, HPO3, etc.).



Figure 17 Left: Graphical presentation of a partition by a Ferrer graph and a Young
diagram. Right: The 'two poles rule' as the specific property of partitions.
(Taken from ref. 51.)

Indeed, i f the same group is introduced many times, then the value of Zv/N
approaches as a limit the ratio of the inserted group. Thus, ratios for very long
(polyethylene-like) CH2-homologs of NH3 and HC1 converge to the ratio of the
CH2-group. Generally, the value Zv/N is a rational number, but sometimes it is a
natural number (like 4 in the polyacetylenes, 3 in sugars differing by a -CH(OH)-
group, 2 in the usual -CH 2 - homologs, and 1 in hydrogenated series such as
alkyne-alkene-alkane.)

The great mathematician Felix Klein once stressed73 that a line on a plane (with
natural numbers as calibrations on the axis X and Y) is the best illustration of the
difference between rational and irrational numbers. (Examples of irrational
numbers are square roots of some natural numbers, the Fibonacci number, or the
number pi.) Indeed, the cotangent representing the slope of a line from the origin
which meets any point of such a plane is a rational number (obviously so if the point
has integers X and Y). However, on such a plane a line with an irrational cotangent
never meets a point; and vice versa, no point will ever be found on such a line.

In respect of the isosteric ensembles on the (Zv,N) plane, it is an intriguing
question whether the electron-to-atom ratio Zv/N may ever be an irrational number.
The reason for this question is that the well-known Hume-Rothery phases tend to
have an electron-to-atom ratio of 21/13, as if they were on an imaginary line with the
irrational Fibonacci number as the cotangent. Analogously, the simplest
oligopeptides have an electron-to-atom ratio surprisingly close to the number n. The
ratio 22/7 for -NHCH2CO- of glycine is the first known rational approximation for
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ft; the next approximation to pi requires at least four such groups. Did nature provide
the flexible set of 20 or so natural amino acids just in order to express its primordial
irrationality? Of course, care should be taken with such 'chemical numerology', but
there is another large area - the bertholides that are not daltonides - where such
thinking could be important

5.4 Distinguishing between Molecules in the Plane of Isosteric Ensembles
The molecules we have declared equal actually are not, and we called this
polymorphism. The problem is how to avoid this polymorphism and better
distinguish the molecules in an isosteric ensemble. Should we add only one or more
axes to the Plane of Isosteric Ensembles? Which distinguishing parameters are the
natural ones, and are they useful for further natural classifications? We may call the
problem of distinguishing neutral molecules on the Plane of Isosteric Ensembles 'the
three i problem'. The three i problem is that isosteres, isomers, and inner-shell-
differentiated molecules (vertically isovalent molecules) are not distinguished.

1. Isosteres. Let us take first isosterism: what are the actual differences between
the isosteres that should be reflected by a distinguishing parameter? Consider
examples of isosteric families, say (LiF, BeO, BN, CC) or (NNO, OCO, FCN, FBO,
FBeF). It is clear that in an ensemble the difference is in the polarity of bonds,
which in turn follows from the degree of homogeneity or heterogeneity of the entire
molecule. Since we have approximated the set of isosteric types by partitions, how
can the 'homogeneity' of partitions be expressed? The simplest way is to calculate
differences in the size of parts of partitions, and this is the best distinguishing
parameter for diatomics. Indeed, such differences for the series (1,7), (2,6), (3,5),
(4,4) are respectively 6,4, 2,0 and reflect an evident difference in the polarity of the
bonds (say, in the above family LiF, BeO, BN, CC).

Unfortunately, the set of such binary differences appears with an increase of the
number of atoms, and it is unclear how to describe such 'homogeneity' even for
triatomics. (The sum of differences leads to degeneracy; thus the partitions (4,4,1)
and (5,2,2) have the same set of differences 0, 3, and 3.) One alternative way is to
write the numbers of every partition in decreasing order, e.g. (5,1,1), (4,2,1), (3,3;1),
(3,2,2), and to sort the partitions according to decreasing magnitudes of the larger
numbers. We consider this problem of how best to distinguish partitions to be still
open. If this parameter is defined as a number, we can imagine a third axis to our
plane. This axis brings one new binary opposite: between ionic (polar) and covalent
(non-polar) molecules.

2. 'Vertically isovalent' molecules. We wish to emphasize that the Plane of
Isosteric Ensembles is a periodic system by definition. Indeed, all the chemical
trends of the isosteric ensembles discussed above with respect to their arrangement
on the plane (ZV,N) are connected only with valence electrons. Hence, we can add
one more axis - a parameter sensitive to the number of inner shells (or inner
electrons) - thus obtaining many such planes. This axis should distinguish between
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light and heavy molecules, and it may also bring more opposites related, say, to the
concept of hard and soft acids and bases.

The question is how to realize such discrimination in practice. Consider, for
example, the entire family of the fourth group halides (CBr4, SiF2Cl2, CF3I etc.)
represented by the same partition (4,7,7,7,7). The seemingly obvious advice - to take
the total sum of the inner-shell electrons - fails, due to possible degeneracy (like
2 + 18 = 10 + 10); the same is true for period numbers (4 + 3 = 5 + 2).43,50 How this
problem can be resolved for the simplest case of diatomics is discussed below
(Section 7).

3. Isomers. Now we return to the problem of distinguishing isomers. As
mentioned in Section 4.2, the entire area is quickly developing. However, the
problem of rational discrimination of any given pair of isomers is still open. Let us
suppose that an ideal super-discriminative index for isomers exists (or will be
proposed in the future). If the index is a number, then the isomers will be
discriminated by one more axis. What exactly will be discriminated (say, degree of
branching or symmetry), and hence what opposite will appear, will be determined
by the nature of the parameter.

So, it seems that ideally (to get a complete resolution of the 'three i problem')
we need three more independent axes 'perpendicular' to our Plane of Isosteric
Ensembles, i.e. some sort of space with five dimensions. The problem is complicated
by the fact that we have ignored transition and rare-earth elements for which it may
be necessary to add one or more parameters (see Section 7). Until this space is
constructed, we shall continue to learn more from its simplified two-dimensional
projection - the Plane of Isosteric Ensembles.

5.5 Topological Trends in the Plane of Isosteric Ensembles
Next, the question arises: is it possible to reflect in any way the structural trends of
molecules, starting only from the model and using the Plane of Isosteric Ensembles
without the addition of new coordinates to that two-dimensional plane? What can we
learn about molecular structure simply from counting the valence electrons and the
atoms?

5.5.1 Point on the Plane of Isosteric Ensembles as a Set of Molecular
Pseudographs
We may try to relate Zv to the number of bonds. The crudest assumption is that any
chemical bond is localized and corresponds to a shared pair of valence electrons. In
such an approximation chemistry is related to graph theory as follows:63,74 atoms
correspond to the vertices, and bonds correspond to the edges, of a graph (see Section
4.2). There is no problem in imagining bent multiple edges between a pair of
vertices, representing familiar double or triple chemical bonds. However, the total
sum of two-electron bonds multiplied by two is not equal to the total of valence
electrons Zv: some electron pairs may turn out to be the non-bonding lone pairs that
are drawn in classical Lewis diagrams as pairs of dots. But how does one express
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lone pairs in a graph?
The simple answer often discussed in the literature is to use loops, i.e. bent edges

of a graph that start and finish at the same vertex. Graphs with such loops are called
pseudographs.74 Any vertex of a (pseudo)graph is characterized by its degree - the
number of edges adjacent to this vertex. If we consider that the two ends of a loop
add 2 to the vertex degree, then a molecular pseudograph has an elegant feature: the
degree of any vertex is simply the group number of the matching atom in the
(main-group part of) the Periodic Table, see Figure 18. Hence, the total number of
vertices (V) exactly corresponds to the number of atoms (V = N), and the sum of all
edges (E) is half the number of valence electrons (E = 1/2 Zv) in the corresponding
molecule.

Figure 18 Examples of the pseudographs for molecules of water, sulfuric acid, and
pyridine.

Evidently this discussion makes sense only for molecules with an even value of
Zv and, among this class, only for molecules with closed shells (that are not
biradicals). For them, we may conclude that every point Zv on the Plane of Isosteric
Ensembles corresponds to a set of pseudographs with the same number of edges (E)
and the same number of vertices (V). Hence, we may redraw the Plane on new axes
E and V, and place on it some examples of pseudographs (Figure 19). What can be
learned from such a presentation?

5.5.2 Counting of Cycles and Components from Electrons and Atoms
A pseudograph may either be connected or not, i.e. it may consist of K parts or
components. The parameter K can be identified with the number of isolated
molecules (say, as a molecular ensemble before or after a reaction). A pseudograph
may consist of C cycles. The cycles can be of various sizes: thus, there may be the
usual cycles of size 3 or higher (as in the cycloalkanes), and there may be less usual
formal cycles of size 2 (as in double bonds) or even strange cycles of size 1 (loops).



Figure 19 The Plane of Isosteric Ensembles redrawn as the (E,V) plane with examples
of pseudographs. (Taken from ref. 50.)

The parameter C for molecules should be considered as the total number of
molecular cycles, including the 'strange cycles'. The counting of cycles and
components is a standard tool of topology, and the indices K and C reflect the
simplest aspects of molecular topology. How do the values K and C follow from the
valence electron count?

There is a well-known equation74 that relates the total number of vertices (V),
edges (E), cycles (C), and components (K) in a pseudograph (and any other graph);
it is V - E = K - C . Consequently, for molecules with localized bonds,
2N - Zv = 2K - 2C. If only isolated molecules (K = 1) are considered, then
'isocyclic' molecules appear on the lines parallel to the bisector of the Plane of
Isosteric Ensembles, i.e. to the line V = E (or N = 1/2 Z), see Figure 19.

5.5.3 Cyclomatic Number of Pseudographs and Homeomorphism of Structures
More strictly speaking, the number C is the so-called cyclomatic number of the
graph, i.e. the number of independent cycles.74 For instance, in the graph of a
tetrahedron (with solid vertices and edges but empty faces) only three cycles are
independent; the fourth 'phantom-cycle' appears as the apparent result of the
adjacency of three other cycles. If we cut edges (without forming new components),
the independent cycles should disappear, and the final result of such cuts is a graph
without cycles. Such a graph is called a tree. The cyclomatic number is the number
of these cuts necessary to obtain a tree. Only three (not four) such cuts are necessary
to destroy all the cycles in a tetrahedron and obtain a tree.

We may clarify and prove the topological nature of cycles in a rather unusual
manner: by mentally inflating a graph. Consider a graph to consist of rubber tubes
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(edges) that are adjacent to one another and closed at the terminal vertices. Inflating
of such tubes causes transformation of the graph to some closed two-dimensional
surface, in three-dimensional space, having the properties of the classical objects of
topology (such as a sphere or a torus). In topology, these surfaces are classified
according to the number of handles (this peculiarity is also called the genus of the
surfaces).75 Two surfaces with the same number of handles are considered
indistinguishable, topologically equivalent, or homeomorphic (like the coffee cup
and doughnut) and may be transformed into one another by the operations of 'rubber
geometry' - continuous deformations without cuts and gluing. The genus stays
topologically invariant in such transformations.

tn our inflating model every handle appears from a cycle. The cycles, in turn,
originate from the total number of lone pairs, multiple bonds, and (independent)
cycles of a molecule. In this way, the genus of such surfaces corresponding to
molecular structures follows from the electron count.51,76

Homeomorphic two-dimensional surfaces originate from molecules with
isocyclic pseudographs; we call such molecules homeomorphic. The arrangement of
homeomorphic families in the Plane of Isosteric Ensembles is shown in Figure 20a,
and an example of how to attribute a two-dimensional surface to a molecule is
presented in Figure 20b.

Figure 20 (a) Arrangement of homeomorphic families in the Plane of Isosteric
Ensembles, (b) Steps from a molecule to its two-dimensional image via
pseudograph. (Taken from ref. 51.)

What is the meaning of the genus (cyclomatic number) for molecules, and what
does homeomorphism (or its absence) mean in molecular series? The simplest
answer is that the genus is some sort of generalization of the usual degree of
saturation in hydrocarbons. Let us explore the hydrocarbon case. Homological
hydrocarbons of the formula CnH2n+x with given x have the same saturation degree
x. For alkanes (x = 2) we have a sphere, for alkenes or cycloalkanes (x = 0) we have
a torus. (Generally, x is the Euler characteristic of the surface.) Consequently,
homeomorphism corresponds to the well-known phenomenon of homology for
organic compounds. In many cases, homologs are rather similar in chemical



behavior, and their properties vary monotonically or sometimes even periodically.77

Hydrocarbon homologs differ by CH2 groups, and this group appears to be a unique
one since its insertion does not change the C value (the cyclomatic number or the
number of handles). Are there any examples of other groups with the same property?

There is another such fragment in the different context of aromatic cycles: the
group CH+. One can easily see that this fragment is responsible for the difference
between 5-, 6-, and 7-membered aromatic cycles with 6 pi-electrons,61 namely the
cyclopentadienyl-anion C5H5

-, benzene C6H6, and the tropylium cation C7H7
+.

Hence, these chemically similar pi-systems appear to be homeomorphic in the same
sense that the usual CH2 homologs are. Applying the 'alchemical' proton shift to the
anion C5H5

- we obtain pyrrole, which is again homeomorphic to benzene. Of course,
the homeomorphism caused by the insertion of a CH+ group is not responsible for
the origin of aromaticity. However, it conserves the initial aromatic (or
anti-aromatic) pattern of a delocalized system.

One more example of a fragment that does not change the cyclomatic number is
the group BH, isoelectronic with CH+. There is a well-known classification of the
boron hydrides into the closo-, nido-, and arachno-families, according to the
structural similarity of the molecules inside every series with the same 'homological
difference' BH.62'78 Of course, we cannot attribute any pseudographs to such
structures (their bonds are no longer localized). Nevertheless, if one plots the
partitions for such families as points on the Plane of Isosteric Ensembles, the lines
that are obtained will be parallel not only to one another, but also to the other lines
of the usual CH2 homologica! series.

We may conclude that the molecular cyclomatic number (or the genus of the
appropriate two-dimensional surface) looks like a remarkable global index of
molecular similarity that is insensitive to molecular dimension. Indeed, it is equally
applicable to the similarities of chains (usual homology), polygons (aromaticity),
and polyhedrons (clusters of boron hydrides). The generalization of this idea in
respect to the rather intriguing topological conservation law in chemical reactions
has recently been discussed by one of us.76

5.5.4 Criteria of Connectedness for Molecular Pseudographs
Another topological property is the connectedness or disconnectedness of molecular
pseudographs. Generally, connectedness is the ability to present an object as one
piece rather than a few disjoint pieces (or components). Of course, making a decision
about the connectedness of a molecule is necessarily arbitrary, since the nature of
bonding between apparently disjoint pieces may vary dramatically (see, e.g.,
Grimm's tetrahedron, in Section 4.1.3). Nevertheless, it is possible to simplify the
problem if we limit ourselves to molecules with localized bonds, constructed only
from the atoms of the first two rows of the periodic table. It is easy to attribute a
certain pseudograph to any such molecules (see the examples below) and
consequently to compare their connectedness. Does connectedness relate to the
arrangement of molecules in the Plane of Isosteric Ensembles? The answer is
'yes':50,51 there are two regions in the Plane where molecules are always
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disconnected (in the sense discussed above).

Loss of connectedness caused by electron deficiency. In Figure 19, isocyclic
molecules lie on parallel lines. One such line (V = E+1) consists of trees,
i.e. molecular graphs without cycles. Examples of such molecules are LiH, BeH2,
BH3, CH4, C2H6 etc. Above and to the left of this line no connected graphs are
possible at all, since there are not enough edges to connect the given number of
vertices into a single entity. The molecules from this region (e.g. LiH3 and C2H8)
have electron deficiency, and hence it would be common sense to describe them as
disconnected sets such as LiH + H2 or CH4 + CH4 with localized bonds. We may
change the terminology (by, say, counting bonding molecular orbitals instead of
edges), but not the phenomenon (nor the existence of such a topological boundary).
The consequence is that known molecules from this region (like boron hydrides or
non-classical cations such as CH5

+) all have multicentered bonds.79

Loss of connectedness caused by electron excess. There is another line in the Plane
of Isosteric Ensembles, namely V = 1/3 (E-1), with the same simple property of
being a topological boundary. This line corresponds to the series Ne, F2, F2O, NF3,
CF4, C2F6 etc. Although there are loops in the pseudographs of these molecules, such
structures are also 'trees' with respect to the number of bonds between the heavy
atoms. Below and to the right of this line any molecular pseudograph appears to be
always disconnected, otherwise it reflects a structure that violates the octet rule.
Thus, we cannot imagine connected molecules like Ne2, NeF2, F4, OF4, NF5 and
CF6, and instead we may write only disconnected associations like Ne + Ne,
Ne + F2, F2 + F2, OF2 + F2, NF3 + F2 and CF4 + F2 each member of which obeys the
octet rule. We may try to reinterpret such graph-theoretical observations in terms of
molecular orbitals (saying that antibonding molecular orbitals are occupied in such
molecules), but the phenomenon and its topological interpretation are evident. For
heavier atoms (from the third and higher rows) some of the corresponding
'forbidden' structures (violating the octet rule) are realized (PF5, SF6, IF7 etc.).
Nevertheless, the question as to the nature of their bonds (two-centered or
multicentered) is still open, and the problem is frequently revisited.80

5.6 Molecular Disconnectedness as a Hyperperiodic Function in the Plane of
Isosteric Ensembles
As discussed in Section 4.3, 'alchemical' shifts of protons do not change the general
skeletal structures of molecules, particularly in Grimm series such as F2, H2O2,
N2H4 and C2H6. How can this Grimm rule be applied to a prototype that is a
disconnected molecular pseudograph? The magic rule will be: disconnectedness is
conserved in Grimm series?0

Let us take an example. The molecule Ne2 is disconnected. Consider the Grimm
series associated with this molecule: Ne + HF, HF + HF, HF + H2O and NH3 + HF,
or NH4

+ + F - , NH3 + NH3 and CH4 + CH4. Of course, the pseudographs of these
molecules are disconnected, otherwise the octet rule is violated (as in, say, F - NH4
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with penta-coordinated nitrogen). The bonds of such associations of molecules are
either ionic, van der Waals, or hydrogen bonds, but not the usual covalent bonds.
This series has fixed Zv, and lies on a vertical line in the Plane of Isosteric Ensembles.
Such disconnected prototypes appear periodically in every row with a period length
of Zv = 6, as in the series discussed above with Ne2 as a prototype (Zv = 16), and then
NeF2 (Zv = 22), F4 (Zv = 28), OF4 (Zv = 34), NF5 (Zv = 40) etc. As a consequence,
the vertical lines with disconnected Grimm series periodically cross the Plane of
Isosteric Ensembles. It is possible to move from any point on the plane to one of
these lines (without changing the number of heavy atoms) in either of two ways:
either by the successive addition of electrons in isoatomic series (e.g. N2, O2, F2,
Ne + Ne) or by successive hydrogenation steps (e.g. N2, N2H2, N2H4, NH3 + NH3).
Clearly, the loss of connectedness in such a series has nothing in common with the
relation between N and Zv. Instead, only the number of heavy atoms is responsible
for such periodic disconnectedness.

Concluding the discussion of the model for a global classification based on the
Plane of Isosteric Ensembles, we should stress that this oversimplified projection
serves as a crude pattern for a natural and periodic system of molecules. It is natural
(according to the criteria of Section 3.1) since the disposition of molecules in such a
system reflects archetypal chemical and topological features. It is periodic
(according to Dias' criteria of Section 3.2 and also to common sense). First, it is
periodic in that we may consider many Planes of Isosteric Ensembles differing in the
number of molecular inner shells. Second, it is periodic with respect to the regular
appearance of disconnectedness. This last phenomenon would be better termed
hyperperiodicity. Its origin is no longer connected with the atomic periodicity and
should be discussed more carefully.

6. The Hyperperiodicity Pattern: Classification of Isovalent Ensembles
Hyperperiodicity - the loss of connectedness of all members within some Grimm
families - means that the isoelectronic principle does not exhaust all the possibilities
of arranging molecules in equal sets. Another possibility, just discussed, is the
arrangement of molecules into isovalent Grimm series. Such series have a fixed
number of heavy atoms NA but a variable number of protons (say, for the series from
Ne to methane, NA = 1, and for the series from CO2 to allene, NA = 3). As was
mentioned earlier, similarity in skeletal structures is typical for Grimm series. It
seems clear that we could construct the plane (ZV,NA) and investigate it in a manner
analogous to our study of the Plane of Isosteric Ensembles.

A point on the (ZV,NA) plane represents molecules with a given number of
valence electrons and with a given number of heavy atoms. Let us replace the points
with cells; inside a cell the molecules are considered indistinguishable. It is
reasonable to represent the families inside each of the cells symbolically by pairs of
molecules, where the first one has no hydrogen atoms, and the second one has a large
(or maximal) number of hydrogen atoms. The pairs (F2-C2H6), (FNO-C3H6),
(FNCO-C4H6) clearly illustrate such isovalent cells. Of course, there may be
polymorphism (the three i's), and therefore the pairs (NF3 - isobutane) and
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(F2O2 - butane) represent the same cell with Zv = 26 and NA = 4, as also does the pair
(SOF2 - H2CS(CH3)2), where the last molecule is the dipolar sulfur ylide.

Many chemists (especially Grimm, Mulliken, and Walsh) long ago used series
with fixed NA and variable Zv (for instance, series like HnXY or HnAB2) in order to
follow structural trends as a function of variable numbers of electrons and
protons.69,70,81 Let us call such series with constant numbers of heavy atoms
hyper-rows, considering them as finite sequences of cells ordered with increasing
number of Zv. The first hyper-row originates from the atoms (Li to Ne) and its cells
include the elements with corresponding hydrides like O with BH3 or F with CH3.
The second hyper-row starts with Li2 and finishes with (Ne2-C2H8). How do such
hyper-rows with different NA relate to one another and in what respect? Can we
arrange them in some sort of a table?

Of course, every hyper-row always has a unique cell with an alkane molecule.
Those cells of the first four hyper-rows are (Ne-CH4), (F2-C2H6), (F2O-C3H8) and
(NF3-C4H10). Let us shift the hyper-rows in respect to one another until the cells
with alkanes (and of course with their prototypes Ne, F2, F2O, NF3 etc.) are arranged
into a vertical column. The resulting total set of columns (which will be called the
hyper-columns) and hyper-rows form a table. As we illustrate below, this can be
considered as showing the pattern of molecular hyperperiodicity?50 Such a
'hyperperiodic table' is shown in Figure 21. Only selected molecules without
hydrogen atoms (one in each cell) and only cells with even Zv are shown in this table.

The first feature of the table is that it combines the advantages of the two local
tables described above: one of organic and another of inorganic molecules (see
Section 4.1.1). Indeed, both of those tables - Morozov's table for hydrocarbons
(Figure 8) and Haas's tables of paraelements and derivatives (Figure 9) -
immediately follow as two important special cases of the hyperperiodic chart. It is
simply necessary to add columns with odd Zv and to display only specific members
of the cells, either hydrocarbons and their radicals or small perfluorinated inorganic
groups (paraelements).

Let us try to clarify what the difference is between molecules from different
hyper-columns, and, vice versa, what sort of similarity exists between molecules
from the same vertical group. Consider the series of molecules of the simplest type
ABX, where A is a central atom with x ligands B (B - electronegative atoms like
oxygen or halogens). A first glance at the right-hand part of Figure 21 gives an
immediate conclusion: the molecules from the same hyper-column have similar
shapes, while the molecules from different hyper-columns display regular
differences in their shape. A familiar example of the latter is the series of fluorides
BeF2, BF3, CF4, PF5 and SF6, where each member represents a different
hyper-column. Molecular shapes within this series progress in the following order:
line, triangle, tetrahedron, trigonal bipyramid, octahedron.81'82 Here the molecular
shape is a polyhedron formed by the fluorine ligands, or (alternatively) by the
bonding electron pairs. We may compare the geometries along the last few members
of several hyper-rows (BeF2-CF2-SF2-XeF2, BF3-NF3-C1F3, CF4-SF4-XeF4 etc.)
and conclude that the structural changes follow the same order as that just described.



Figure 21 The hyperperiodic table of isovalent ensembles of molecules (E.V. Babaev,
• . 1988). One representative member is shown for every cell. The hyper-rows

consist of molecules with the same number of heavy atoms. The
hyper-columns (shown only for even Zv) reflect similar skeletal shapes and
topology, see text. (Reproduced with minor revision from ref. 50.)

(In these cases the polyhedron is formed by bonding and non-bonding lone pairs.82)
The shape similarity along any hyper-column, in turn, is manifested by the series

F2O-NF3-CF4 (tetrahedron), XeF2-ClF3-SF4-PF5 (trigonal bipyramid) and
XeF4-IF5-SF6 (octahedron). There are additional sets of isosteres -
AlF3-SiOF2-PO2F- SO3 (triangle), SiF4-POF3-SO2F2-ClO3F (tetrahedron) etc. -
that provide more support for the same thesis. The dependence of molecular shapes
on the electron count was recognized long ago. It was explained in different ways,
either in terms of the local environment of atom A (as in the hybridization model or
in the Gillespie-Nyholm VSEPR-rules)82 or in terms of Walsh correlation diagrams
(treating the geometry as a function of energy and the occupancy in the orbitals of
the entire molecule).70'81

By definition, cells have been arranged into hyper-columns according to the
homology principle (Section 5.5.3). Homologous hydrocarbons CnH2n+x may differ
by any number of CH2 groups, and the CH2 group bears six valence electrons. By
extension, members of the same hyper-column may differ by any fragment with six
valence electrons (more strictly speaking, the difference is six times the number of
heavy atoms in the fragment, NAF). The simplest such fragments are O and F+, and
it is easy to see that just these ligands are responsible for the conservation of shapes
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in the ABx-type molecules (such as the triangular series CF2-CF3
+-BF3 or the

tetrahedral family NF3-NF4
+-NF3O). These fragments, therefore, serve as the

heavy-atom analogs of the proton (see Section 4.3), and their removals or additions
(and even rearrangements) only slightly change the local environment of the central
atoms A in molecules. More such ligands may be constructed by applying the
element displacement principle57 to the groups F+ and O (see Figure 9 and Section
4.1.1).

The question arises, however, what sort of similarity appears between members
of hyper-columns with larger numbers of atoms that are difficult (or impossible) to
present as ABX molecules? The question comes into focus by considering other
examples of fragments with 6NAF valence electrons (-S-, -CH2-, -CH2O-,
-CH(OH)-, -CF 2 - -(HO)PO2-, -SO3-, and -Si(OH)2O-), typical homological
fragments which are extremely widespread in many natural (and artificial) oligomers
and polymers (cf. sugars, alumosilicates, oligomers of polysulfides, crown-ethers,
polysulfuric and polyphosphoric acids etc.). Hence, the members of the same
hyper-column are homological in a very general sense. Then, what is the difference
between such global homological families?

Remember that the hydrocarbons are vertically arranged in homological series.
A horizontal shift to the left from the alkanes leads to the hyper-column with alkenes
and cycloalkanes. More shifts to the left correspond to less saturated hydrocarbons.
Hence, an alternative meaning of the hyper-column number is the saturation degree
(number of multiple bonds and cycles). We are no longer limited by hydrocarbons,
and should remember possible inorganic cycles (e.g, S$) or polycycles (P4 or
adamantane-like oxides E4O6 and E 4 O 1 0 , where E stands for atoms of the 5th group
of the periodic table), and attribute to them an analogous 'degree of saturation'. As
we proved in discussing the Plane of Isosteric Ensembles, the number of cycles
(independent of their size) is an important topological feature of a molecule. How
then may this topological feature be related to the trends of molecular shapes in the
ABX series?

The simplest answer is to consider geometrical similarity (for ABX shapes) as a
particular case of a more global topological similarity (homeomorphism) between
the structures. Hence, we should somehow draw loops in the skeletal structures,
obtain pseudographs, and consider the hyper-columns to be examples of isocyclic or
homeomorphic structures. This works, if a loop is attributed to a two-electron
vacancy in a molecule; say, to an empty p-orbital of a Lewis acid. (Thus,
pseudographs of BH3, BeH2 and LiH should consist of 1, 2, and 3 loops,
respectively.) Then, the total number of such vacancies, double bonds, and cycles is
a skeletal cyclomatic number with the clear meaning of a 'generalized electron
deficiency' (considered with respect to the reference series, alkanes). This beautiful
mathematical analogy has a physical background: the 'emptiness' in the middle of (a
large) cycle or in an atom with a vacancy (a degenerated cycle) corresponds to a
specific deficiency in electronic density.83 This analogy may be widened to include
the double bond (presented as a 'banana-like' bond) as the cycle of size 2.

We may conclude that the hyper-columns contain homeomorphic skeletal
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structures and therefore that they can be numbered according to the cyclomatic
number of the appropriate pseudographs (as shown by the numbers at the top of the
Figure 21) or according to the Euler characteristics of imaginary 2D-surfaces
(obtained by skeleton-inflating, cf. Section 4.3.2), see Figure 22. The Euler
characteristic chi is a topological invariant that can be easily calculated for topological
objects.75 A familiar example is the famous Euler theorem V - E + F = 2 for a
polyhedron (where V, E, and F are the number of vertices, edges and faces and chi = 2
is the Euler characteristic for the sphere to which the polyhedron is homeomorphic.)
The heuristic role of the Euler characteristic in chemical topology is well known.84

Figure 22 Geometrical and topological trends along the hyper-columns.
(A) Topological features (handles and x) are changed parallel to the
hybridization; (B) Insertion of tetrahedral sp3-fragments (with Zv = 6NAF)
conserve chi; (C) Total chi of a disconnected set is the arithmetic sum of chi of
the connected prototypes.

For connected two-dimensional surfaces with C handles, x = 2 - 2C. A decrease
of chi in going from right to left in Figures 21 and 22 is therefore paralleled by an
increase of electron deficiency (due to the appearance of new 'handles' from cycles,
multiple bonds, or electron vacancies). For hypervalent structures chi may also be
defined85 if one assumes such hyperconnected objects to be two-dimensional
surfaces with a jointly shared point, as in Figure 22. With this in mind, a rather
elegant principle - the conservation of chi - may be used to define the necessary
two-dimensional surfaces for both electron-precise and electron-rich structures.76'85



Finally, hyperperiodicity along a hyper-column can be treated in the following
manner: insertion of specific fragments with Zv = 6NAF either conserves the local
environment of the atoms (i.e. molecular shape) if the inserted fragments are small,
or causes structural changes which conserve the generalized electron deficiency and
the key topological features of the initial structures if the fragments are large.

7. Special Types of Charts: Diatomic Molecules
Peculiarities of diatomics. The problem of molecular periodicity in series of
diatomics has attracted a great deal of attention from both chemists and physicists,
especially spectroscopists and quantum chemists. Most diatomics (e.g. NaCl or CaO)
are obtained in the vapor phase as short-lived species, and only a few of them (e.g.
diatomic halogens, O2, N2, CO and NO) are stable 'chemical' molecules. For this
reason, classifications which include all diatomics have been called 'physical'
systems.52 Actually, many scientists who studied the trends of diatomics intensively
never looked at their results with respect to molecular periodicity. Sometimes,
however, the regularities discovered in diatomics caused the construction of various
charts called 'Periodic Tables of Diatomic Molecules'. Curiously, this term has been
most frequently used by Russian chemists (since Mendeleev's time); among the
independent contributors in this area are Syrkin (1960s),86a Schukaryov (1970s),87a

Shigorin (1970s),86b Kaslin (1980s),86c Monyakin (1980s),86d and Zhuvikin
(1980-90s, in collaboration with one of us, see Section 8). A review of the early
ideas, problems, and achievements in this important field is given in ref. 43.

Although diatomics are the simplest case of polyatomic molecules, there is no
simplicity in their periodic classification. The existence of periodicity in many
properties of diatomics was observed long ago, and many graphs with different
properties plotted against different variable parameters can be found in books.43,87

One of the first periodic tables of diatomics was formulated by Clark in the 1930s on
the basis of the periodic behavior of spectroscopic constants.86e He drew a series of
tables for diatomic molecules, arranging them in a simplified version of the periodic
chart. Clark also devoted a great deal of effort to showing the similarity of data for
isovalent molecules.

There are a few problems associated with a Periodic Table of Diatomics, but the
problems can be solved. The first is that the electronic structures of diatomic
molecules do not follow the same pattern as the structures of atoms. In atomic
periodicity, the electron capacities of the periods and other general trends for atoms
with atomic numbers up to 18 are satisfactorily explained by the simple assumption
that the electronic structures are equivalent to that of a slightly perturbed hydrogen
atom (where the sequence of atomic orbitals is 1s, 2s, 2p, 3s, and 3p). However, there
is no such unique pattern for similarly light diatomics; for example, the orbital
sequence of B2 is different from that of F2 (in contrast to the situation for the atoms
B and F). Crudely speaking, we can neither predict an a priori sequence of levels nor
the exact 'lengths of periods' for diatomics just as it becomes impossible to continue
the simple pattern, mentioned above, for atoms beyond argon. Nevertheless, a
simplified picture (occupancy of bonding and antibonding molecular orbitals by



valence electrons) qualitatively explains trends in bond lengths and other properties
of diatomics and is described in most introductory courses on molecular orbital
theory; furthermore, aperiodic table can in principle be constructed. Regularities and
irregularities in the electronic structures and terms for diatomics (consisting of atoms
from the first three rows), observed and calculated by quantum-chemical methods,
have been very recently reviewed by Boldyrev and co-workers, who indeed present
a periodic table.88

Comparative prediction of properties. The second problem associated with
Periodic Tables of Diatomics is whether the desired properties of unknown
molecules can be interpolated or extrapolated from the properties of known
molecules? More specifically, which independent variables should be used in the
interpolations or extrapolations? This topic has been under extensive investigation
by one of us and the entire Southern College group.43*^ We mentioned earlier that
each atom has two invariants — c (its column number) and r (its row number) - which
are responsible for its similarity with, or dissimilarity to, other atoms. Consequently,
any diatomic is exactly codified by four numbers (cls r-y, c2, r2) that indicate the rows
and the columns of the two atoms in the molecule. In order to cover all possible
atoms (including d- and f-families) the long-form periodic table with 32 columns
may be used. (In such a case the value c varies from 1 to 32 and the value of r varies
from 1 to 7.) Careful analysis of more than 20 properties of diatomic molecules
against various combinations of these four variables (cj, rj, c2, r2) demonstrates that
monotonic functions appear most often if the product r ^ is used for
comparison.43'89e (In some cases, better results can be achieved by the use of

The least-squares method permits one to make useful predictions about the
properties of diatomics. One prediction was that the published room temperature
entropy of gaseous Mgl, 65.042 J/K9Oa was in error. Indeed, the next edition of the
data tables gave 60.3579 J/K as the entropy .90b Another is that the ionization
potential of the molecule CC1 should be less than the published value of 12.9 eV,
perhaps 10.0 eV or even lower. These isolated predictions are accompanied by
hundreds of predictions for internuclear separations.43

The last but not the least problem about the periodicity of diatomics is how to
express it in graphical form. One simple and elegant example of a Periodic Table of
Diatomics has been proposed by F.-A. Kong from China.91 The molecules on his
chart are arranged in columns and rows, so that the column number is the number of
valence electrons (2y) and the row number is the sum of the period numbers of the
atoms. Thus, the alkali halide molecules NaCl, LiF, LiCl and Csl are found in
column 8 and rows 6, 4, 5 and 11, respectively. Evidently, polymorphism (of
different types) immediately arises in such a classification: first in respect to
isovalency (say, of isosteric LiF and BeO), second in the possible degeneracy in the
sum of the period numbers (say, 3 + 3 = 4 + 2 as in the case of NaCl and KF) and
third in the possibility of alternative arrangement of two different cores between two
atoms from different groups. The last case is illustrated by the pair BeS and MgO,
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which have {c\,c-}) = (2,6) and ( r ^ ) either (2,3) or (3,2). Having obtained more than
one molecule at the same address, Kong listed them; the list requires three pages and
introduces a new descriptor, whether the difference of the atomic valence numbers
is even or odd. In spite of the simplicity and polymorphism of his table, Kong
predicted that the former measurement of the equilibrium separation of Ga and O
atoms in the molecule GaO (reported as 0.182 nanometers) is wrong, and that it
should be close to 0.172 nanometers.

Graphical Variants of Periodic Tables of Diatomics. How can the problem of
polymorphism in a Periodic Table of Diatomics be avoided, and how does the entire
periodic table of diatomics (without polymorphism) look? The experience of the
Southern College group provides a few possible answers to these questions. The
simplest chart (actually, Table) of diatomics arises if one simply considers a
Cartesian lattice with coordinates Zi and Z%, i.e. the numbers of electrons for each
atom (Figure 23-1). The maximum Zmax is considered to be that of the hypothetical
element 118; the entire number of diatomics therefore is 1/2 Zmax (Zraax + 1) = 7021.
Special lines (horizontal and vertical) across the chart show the boundaries between
s-, p-, d-, and f-elements. With the goal to visualize the similarities and
dissimilarities between diatomics, similarly shaped areas between the boundaries are
similarly hatched and labeled as shown on Figure 23-1.

In order to express the relationship between similar and dissimilar domains of
the above lattice more clearly, the cut-and-stack principle could be applied43-8911: the
similar areas can be cut and stacked upon each other. The areas with homonuclear
molecules can be shorn of redundant heteronuclear molecules so that they are
triangular instead of square. Finally, the interrupted pieces can be spliced together,
and the entire periodic system of diatomic molecules will consist of 15 blocks
(Figure 23-2). An example of one block (A) is presented in Figure 23-3. This
Periodic Table of Diatomics may be considered as a disconnected set. As one
alternative way of stacking the domains in Figure 23-1, we may imagine the
connected three-dimensional object in Figure 23-4. The top seven layers of this
arrangement pertain to molecules with H and He atoms, while the three bottom layers
consist of molecules from heavy atoms with Z from 87 to 118.43 The periodic system
shown in Figure 23-2 corresponds very well with data for many properties of
diatomic molecules, but that shown in Figure 23-4 does not.

It is possible to imagine a repetition of this entire process for molecules with any
one of the possible degrees of ionization. Figure 23-4 shows the spatial relationships
of block A of the Periodic Table of Unipositive Diatomic Ions to block A of the
Periodic Table of Diatomics. The rationale for the lateral displacement is based (see
refs. 43, 89d) on the fact that the similarities of the electron structures of molecular
pairs such as N2

++ and Cj would allow the twice-ionized species to be located at the
same addresses as those of the neutral species. The Southern College group has
devoted a great deal of effort to the relationships of ionized diatomics to neutral
diatomics.43>89d-89e

We can suppose that the existence of four invariants for every diatomic (cj, rj,



Figure 23 The cut-and-stack method to construct a Periodic Table of Diatomic Molecules, see text. (1) The initial two-dimensional lattice
of diatomics. (2) 15 possible blocks illustrate the entire system of diatomics. (3) One of the blocks obtained when interrupted
pieces of the lattice are spliced together; (4) one alternative result of stacking all the parts of (1). (Adapted with permission from
ref. 43.)



Figure 24 Different projections on a computer screen of a four-dimensional object,
obtained by self-multiplication of the periodic table of atoms, illustrate a
possible structure of the periodic chart of diatomic molecules. (Taken with
permission from ref. 43.)



c2, r2) corresponds to a sort of four-dimensional object. It is easy to see why this
should be. The process of combining all possible atoms with each other, two at a
time, results in the formation of all possible diatomic molecules. This process is
represented symbolically by combining the periodic chart of the atoms, which is
two-dimensional, with itself, thus producing a four-dimensional periodic system of
all possible diatomic molecules.43,89d,92a

If the periodic chart of the elements were a perfect square, then the molecular
system would be a hypercube. The periodic chart actually consists of one or more
rectangular shapes, and so the molecular system will consist of one or many
rectangular hyper-parallelepipeds. If one takes the medium form of the periodic table
(without rare-earth elements) and performs its self-multiplication, the resulting
object will be the four-dimensional system of diatomics containing no rare-earth
elements. This architecture of the object43,92b has been constructed with the help of
a computer program by the Southern College group. The object can be formally
rotated, and a few of the projections obtained on the computer screen are presented
in Figure 24.

8. Conclusion
The problem of the global periodic system of molecules remains, for, as we have
shown, there may be more questions than answers in this field. Among our promising
recent achievements are novel applications of compact92a,93-95 and
non-compact95'96 groups to formulate Periodic Tables of Diatomic and Triatomic
molecules (where the irreducible presentations are treated as molecular multiplets),
the analysis of organic reactivity in respect to the diagonal similarity in the
hyperperiodic table (the 'super-consonant theorem')97 and attempts of periodic
classifications of special classes of chemical reactions.98

The paradigm of global molecular classification may be helpful in teaching,
understanding and unifying chemistry. In some respects such a 'pure chemical'
paradigm is complementary to the quantum-chemical approach. Indeed, a quantum
chemist requires no knowledge of molecular kinship to calculate a property
(although the programmer may well need it). However, sooner or later he or she
calculates many properties for many molecules and hence needs somehow to arrange
the numerous data.

We may ask: to which branch of science should we attribute the art and logic of
natural and periodic molecular classifications? Molecules are objects of chemistry
and physics, and their classification (as we have seen) requires rather delicate
mathematical models. In order to define the appropriate place of such an activity, we
may arrange the so-called exact sciences in some sort of a 'periodic table':
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Physical

Chemical

Mathematical

Physics

Pure & Applied
Physics

Chemical
Physics

Mathematical
Physics

Chemistry

Physical
Chemistry

Pure & Applied
Chemistry

Mathematical
Chemistry

Mathematics

(Physical Mathematics)

(Chemical Mathematics)

Pure & Applied
Mathematics

The vertical 'groups' are pure sciences, while the rows are their applications to other
sciences. It is easy to see familiar sciences such as chemical physics, and physical
chemistry, and the branches of applied mathematics. (These terms may be observed,
say, as the names of scientific journals, that 'periodically' appear in libraries.) We
can 'predict' two new (still little-known) sciences in the upper-right corner of the
table, namely physical and especially chemical mathematics. We may remember that
there are relatively new disciplines called chemical topology and chemical graph
theory63 (not with reversed word order), and that these fields are most closely related
to the problems discussed in this chapter. It seems that global molecular
classifications may be related specifically to chemical mathematics. Let us explain
why.

Mathematicians often develop ideal objects and forms without any idea how to
apply them to real physical and chemical objects of the universe. Vice versa,
chemists often propose pragmatic, empirical generalizations about real objects
(e.g. homology, isovalency, isomerism, aromaticity, degree of saturation, the octet
rule, and the repulsion of electron pairs) without any idea how these concepts relate
to one another in a mathematical sense. As we have seen, the interrelation between
such archetypal chemical concepts is clearly displayed and clarified in global
molecular classifications. Surprisingly, such interrelations appear to have the same
nature and the same beauty that exists in rather abstract mathematical objects
(homeomorphism of surfaces, connectedness of graphs, properties of partitions etc.).
We can say that we are applying chemistry to mathematics and finding ideal
mathematical forms inside chemistry, rather than bringing a mathematical model to
,,chemistry. .
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