Е. В. Бабаев, В. Н. Торочешников, С. И. Бобровский

СПЕКТРЫ ЯМР ИНДОЛИЗИНОВ И ИХ СИГМА-КОМПЛЕКСОВ

Проведены обзор новых данных и систематизация ранних исследований авторов по спектроскопии ЯМР ¹Н и ¹³С индолизищов с акцепторными группами в положениях 1, 3, 6 или 8. Величны химических сдвигов в спектрах ЯМР ¹³С сопоставлены с рассчитанными методом MNDO величными полных зарядов. Показана эффективность использования спектров ПМР для отнессния изомеров при конкурентном образовании пар 1 (3) - якбо 6(8)-замещенных индолизинов, в том числе для доказательства неожиданного илсо-протонирования в ряду 3-замещенных индолизинов. Обсуждены спектральные свойства катионных и анионных сигма-комплексов, образуемых индолизинами.

В последнее десятилетие авторы систематически изучали закономерности строения и реакцинной способности индолизинов с акцепторными группами в положениях 1, 3, 6 и 8 (структура I, заместители A, B, C, D — нитро-, циано- или ацильные группы), эффективно используя методы спектроскопии ЯМР. Настоящий обзор систематизирует наши ранние результаты (в том числе неопубликованные) по анализу спектров ЯМР ¹Н и ¹³С замещенных индолизинов.

Ароматическая система индолизина (пирроло[1,2-а]пиридина) I, по данным рентгеноструктурного анализа, обладает выраженным альтернированием простых и двойных связей. Скелет этого гетероцикла можно, таким образом, вполне корректно рассматривать как суперпозицию фрагментов бутадиена и пиррола или, попросту, как бициклический тетраен. Нетрудно видеть, что к любому из углеродных атомов бициклического скелета примыкают связи различной кратности. Следовательно, заместитель в любом из положений индолизинового ядра имеет (в отличие, скажем, от ядра бензола) два неэквивалентных *орто*-положения, из которых одно отделено существенно простой связью, а второе — существенно двойной (см. разбиение на фрагменты при переходе I — II). Правомерно ожидать неравноценности передачи влияния заместителя через связи разной кратности, что должно проявляться при анализе строения замещенных индолизинов физическими методами, например в спектроскопии ЯМР.

В табл. 1 приведены данные спектров ЯМР ¹³С для ряда замещенных нитро-, ацетил- и цианоиндолизинов. Действительно, влияние электроноакцепторных групп из положения 8 в *орто*-положения 7 и 9 принципиально

Таблица і

•

Индолизии (заместители)	δ (Μ. μ., CDCl3)									
	C ₍₁₎	C(2)	C ₍₃₎	C(5)	C(6)	C ₍₇₎	C(8)	C(9)	Мс	
- [1]	99,6	124,3	110,9	124,3	109,0	116,2	117,9	132,6	12,8	
2-Me	123,6	124,5	113,3	125,9	114,4	126,5	119,1	132,7	12,5	
I-NO ₂ -2Me	126,1	123,8	112,7	123,7	113,6	127,1	128,6	130,7	12,6, 21,4	
I-NO2-2,8-Me2	103,9	119,4	130,7	127,4	115,9	125,6	119,0	138,1	·	
3-NO ₂	105,0	132,2	128,6	127,9	114,8	126,2	118,1	136,5	15,6	
3-NO2-2-Me	104,0	132,4	127,4	127,4	114,8	125,8	125,7	136,9	15,7, 17.5	
6-NO2-2-Me	103,9	130,1	114,4	125,8	115,3	110,6	117,3	132,4	12,4	
6-NO2-2,7-Me2	101,7	129,9	113,0	126,7	135,7	121,0	118,2	132,4	12,0, 20,0	
8-NO2-2-Me	103,9	124,2	113,4	130,9	106,5	118,4	138,6	128,6	12,4	
8-NO2-2,7-Me2	102,0	124,7	112,6	128,2	112,2	127,4	137,6	127,0	12,7, 19,3	
8-COMe-2-Me	103,4	126,2	111,5	129,1	107,3	123,3	126,8	128,4	12,2, 26.6	
8-CN-2-Me	101.1	127 1	113.0	128.5	108.0	1247	102.1	129.8	12.6	

Данные спектров ЯМР ¹³С замещенных индолизинов

.

:

.

.

÷.

.. '

Атом		Заместители в 2-метилиндолизине										
	_	8-Ac	8-CN	8-NO2	6-NO2	1-NO2	3-NO2					
C ₍₁₎	4,1006	4,1023	4,0910	4,0594	4,0859	4,1677	4,1204					
C(2)	4,1418	4,1343	4,1328	4,1325	4,1208	4,0448	4,0331					
C(3)	4,0245	4,0227	4,0202	4,0116	4,0094	4,0458	4,0750					
N(4)	5,1470	5,1471	5,1544	5,1696	5,1723	5,1359	5,1125					
C(5)	3,9412	3,9234	3,9078	3,8778	3,8235	3,9409	3,9337					
C(9)	4,0085	3,9865	3,9919	3,9864	3,9952	3,8945	3,9623					
C(6)	4,0993	4,1133	4,1252	4,1497	4,1378	4,0905	4,0885					
C(8)	4,0218	4,0989	3,9750	4,0547	4,0297	4,0358	4,0372					
C(7)	4,0646	4,0111	3,9951	3,9468	4,0233	4,0350	4,0397					

Заселенность скелетных положений индолизинового ядра замещенных индолизинов по данным MNDO расчета

различно. Сигнал атома С(7), отделенного двойной связью, претерпевает (в сравнении с 2-метилиндолизином) слабопольный сдвиг, тогда как сигнал атома С(9), расположенного через простую связь, испытывает сильнопольный сдвиг. Аналогичный «разнопольный» сдвиг характерен и <u>л</u>ля орто-положений б-нитроиндолизина. (В случае 1-нитроиндолизинов слабопольный сдвиг орто-расположенных атомов С(2) и С(9) невелик, однако и в этом случае он несколько более выражен через двойную связь.) Можно отметить аналогичный эффект в спектрах ЯМР некоторых других нитоогетаренов с альтернирующими связями, в частности для орто-положений 3-нитропиррода [2] или для производных 6(8)-нитроимидазо [1,2-а]пиридинов — 1-азааналогов рассматриваемых индолизинов [3].

Ранее в ряду азаинденов (включавшем индолизин) отмечалось наличие ¹³C корреляции межлу величинами химических спвигов ядер рассчитанными методом INDO полными зарядами на атомах 11, 41. С целью поиска аналогичных корреляций мы предприняли полуэмпирический расчет электронной структуры ряда замещенных индолизинов методом MNDO (табл. 2). Расчет проводился с полной оптимизацией геометрии. Согласно данным расчета, индолизиновое ядро является плоским; альтернирующая последовательность простых и двойных связей наблюдалась во всех случаях. а длины связей слабо менялись при введении электроноакцепторных функций. Нитрогруппа в 1- и 6-нитроиндолизинах лежит в плоскости кольца, тогда как в 3- и 8-нитроизомерах и 8-ацетилпроизводном угол поворота заместителя составляет примерно 60° к плоскости бицикла.

÷

В целом прямая корреляция между значениями химических сдвигов ядер 13 С и величинами полного заряда на атомах отсутствует. Тем не менее, наблюдается качественно согласованная картина неэквивалентной передачи влияния заместителя в разные *орто*-положения. При введении акцептора в ядро 2-метилиндолизина для любого из *орто*-расположенных к заместителю атомов полный заряд уменьшается. Такое падение заряда, однако, в 3...6 раз более выражено для атома, отделенного двойной связью.

В табл. 3 приведены данные спектров ПМР замещенных индолизинов, синтезированных ранее. Располагая спектрами структур, содержащих акцепторные группы только в положении 3 пиррольного цикла или только в положениях 6(8) пиридинового фрагмента, а также молекулы, включающие две акцепторные 3,6- или 3,8-расположенные функции в обоих циклах, можно впервые проанализировать аддитивность влияния акцепторных групп 1238

Заместители	1-81	. 2-Me	3-H	5-H	6-Н	7-н	8-н	Замести- теяь	Растворитель
1	2	3	4	5	6	7	8	9	10
. .	6,09	2,27	6,94	7,64	6,22	6,42	7,12	-	CC1 ₄ [5]
-	6,15	2,25	6,75	7,40	6,10	6,35	7.25	·	CDCl ₃
3-COCF ₃	6,10	2,35	-	9,70	6,71	7,0	.7,3	·	CDCl ₃
3-COMe	6,20	2,45	-	9,83	6.65	7,00	7,35	2,45	CDCl ₃
	6,18	2,45		9,91	6,66	7,01	7,27	2,44	CDCl ₃ [5]
3-COPh	6,35	1,95	·-	9,81	6,86	7,15	7,65	7,47,7	CDCl ₃
	6,16	1,87	·	9,68	6,64	6,92	7,25.	7,65	CC1, [5]
3-t-BuCO	6,07	2,20	-	8,77	6,40	6,70	7,30	1,3	CCl ₄
3-CO ₂ Et	6,30	2,56	·	9,46	6,71	6,96	7.35	3,93	CDCl ₃
3-COCI3	6,26	2,70	-	9,60	6,72	7.03	7,3] _	CCI
3-COCHCl2	6,45	2,75		10,07	6,99	7,31	7.51	6,87	CDCl ₃
3-NO ₂	6,44	2,65	i – I	9,66		6,87,7		· _	CDCl ₃
1-COCF ₃		2,43	7,03	7,93	6,75	7.17	8,25	·	CCI ₄
1-COMe	·	2,30	7,05	7,95	6,65	7,15	8,35	2,45	CDCl ₃
		2,40	6,92	7,80	6,56	6,94	8,21	2,45	CCl ₄
1-COPh	·	2,10	7,47,7	8,16	6,80	7,05	8,16	7,47,7	CDCl ₃
1-NO ₂	· _	2,50	7,00	8,32	6,84	7,25	7,95	·	CDCl3
6-СОМе	6,09	2,30	6,9	8,34	·	6,90	6,90	2,16	CCI
8-COMe	7,05	2,31	7,05	7,85	6,28	7.22	-	2,48	CCI
8-CN	6,48	2,30	7,17	7,95	6.4	6,97	_	_	CCI

Данные ПМР спектров замещенных 2-метилиндолизинов δ (м. д.)

	·						.		
1	2	3	4	5	6	7	8	9	10
6-NO2	6,35	2,35	7,25	8,90	1 1	7,12.			
6-NO ₂ -7-Me	6,25	2,35	7,25	8,95	i i	2,65	7,05		CCI ₄
6-NO ₂ -1-Me	2,35	2,35	7,25	9,10	-	7,25	7,25	·	CCI4
6 NO ₂ -5-Me	6,37	2,37	• 7,20	2,90	·	7,36	7,20		CCI
6-NO2-5,7-Me2	6,33	2,34	7,11	2,56	1. j	2,36	7,11	-	CCI.
8-NO2	7,05	2,35	7,20	8,05	6,45	7,25			CCl ₄
8-NO ₂ -7-Me	6,75	2,40	7,20	7,95	6,35	2,60			CCI4
8-NO ₂ -5-Me	7,10	2,38	7,15	2,51	6,39	7,80		·	CCl₄
8-NO ₂ -5,7-Me ₂	6,77	2,41	6,99	2,58	6,18	2,58	·)	CCl₄
8-NO2-2-Et-7-Me	6,53	2,5; 1,3	6,93	7,67	6,07	2,35	-	-	CC4
8-NO2-3,7-Me2	6,57	2,33	2,23	7,57	6,23	2,45	·	·—	CC14
3-COMe-6-NO2	6,50	2,6	·	10,90		7,78	7,38	2,6	CDCl ₃
3-COMe-8-NO2	7,21	2,60	· _	10,24	6,83	8,15	·	2,67	CDCl ₃
3-COPh-6-NO ₂	6,45	1,97	·	10,57	· ·	7,17	7,37	7,5	CDCl ₃
3-COPh-8-NO2	7,20	2,00	· _	9,85	6,85	8,19	·	7,5	CDCl ₃
3-COCF1-6-NO2	6,60	2,60	·_	10,92		7,51	8,00	-	CDCl ₃
3-COCF3-8-NO2	7,30	2,65	·	10,20	7,00	8,30	·	-	CDCI3
3.8-(NO2)2	7,35	2,73	·	9,92	7,07	8,34		·	CDC13
3.6-(NO2)2	6.53	2.67	·	10.60	_	7,87	8,00	- 1	CDCl ₃
1,6-(NO ₂) ₂	-	2,35	7,2	9,15		7,40	7,4		(CD ₃) ₂ CO

Заместители	$(\delta_{3\kappacn} - \delta_{3\alpha\mu})^{-100}$								
	1-H	2-Me	5-H	6(8)- H	7 - H				
8-NO2-3-COMe	+13	-10	+16	+6	-12				
8-NO2-3-COPh	+3	-11	-6	-2	-24				
8-NO2-3-COCF3	+34	+23	+25	+21	-10				
8-NO2-3-NO2	+4	+12	+15	+20	+7				
6-NO2-3-COMe	+16	+20	+1	+11	+28				
6-NO2-3-COPh	+2	+9	+6	+17	+13				
6-NO2-3-COCF3	+38	+25	+15	+40	+27				
6-NO2-3-NO2	-4	+13	+1	+20	+30				

Разность между экспериментальными значениями химических сдвигов ($\delta_{3ксп}$) и рассчитанными по аддитивной схеме (δ_{3agR})*

* $\delta_{ang} - \delta_{2-Me} + \Delta \delta_{3-X} + \Delta \delta_{6(8)-нитро}$, где $\delta_{2-Me} - химсдвиги протонов 2-метилиндолизина,$ $<math>\Delta \delta_{Y} -$ инкременты заместителей.

на химические сдвиги протонов. Данные табл. 4 свидетельствуют, что по крайней мере для класса 3-замещенных 2-метил-6(8)-нитроиндолизинов величины химических сдвигов всех протонов удовлетворительно описываются аддитивной схемой влияния групп 3-Х и 6-либо 8-NO₂.

Важной особенностью структуры замещенных индолизинов [5] является наблюдаемый в спектрах ПМР эффект «пери»-влияния магнитно-анизотропных групп, приводящий к ощутимому слабопольному сдвигу сигнала протона, находящегося в «пери»-положении к такой группе. Полагая, что эмпирически найденная шкала «пери»-влияния групп может быть полезна в спектроскопии других конденсированных гетаренов, приведем последовательность, найденную в ряду индолизинов. Для изученного класса структур возможны три случая «пери»-эффекта (указаны заместители в порядке нарастания эффекта «пери»-влияния):

(1) 3-5-«пери»-эффект: из положения 3 (группа D в структуре I) к атому 5-Н

COCMe3-COCCl3 -CO2Et -NO2 -COCF3-COPh -COMe -COCCl2H.

(2) 1-8-«пери»-эффект: из положения 1 (группа С в структуре I) к атому 8-Н

$$NO_2 - COPh - COMe - COCF_3$$
.

(3) 8-1-«пери»-эффект: из положения 8 (группа В в структуре I) к атому 1-Н

СN (слабо выражен) - NO2 - СОМе.

Как следует из данных табл. 3, наиболее выраженным по величине является первый из указанных эффектов — именно он оказался весьма действенным средством в экспериментальных исследованиях для спектрального отнесения изомеров замещенных индолизинов, в частности при их одновременном образовании в условиях реакции. Таким путем, например, удалось различить 6- и 8-нитроизомеры, конкурентно образующиеся в синтезе индолизинов по методу Чичибабина из алкил- β -нитропяридинов [6]. Аналогичный принцип был положен в основу отнесения изомеров при образовании смесей 1- и 3-ацилиндолизинов при ацилировании индолизинов разнообразными ацилирующими агентами [7], при изомеризации 3-ацилиндолизинов в 1-изомеры и реакции переацилирования [8]. Сходным образом удается отнести 1- и 3-нитроизомеры, получаемые при нитровании 2-метил-6-нитроиндолизина [9]. Наконец, именно этот принцип использован для доказательства образования 3-замещенных производных при ацилировании 6- и 8- нитроиндолизинов [10].

Хорощо известна способность инполизинов, подобно азуленам, полвергаться протонированию под действием минеральных кислот с образованием стабильных катионных сигма-комплексов. Для ряда индолизинов, содержаших электроноакцепторные функции в положениях 6 или 8. методом ПМР зарегистрированы исключительно соответствующие ЗН-катионы (табл. 5). Следует отметить, что для изученных индолизинов съемка спектра ПМР в трифторуксусной кислоте часто является удобным методическим приемом воятверждения структуры исходного индолизина. Действительно, протонирование нередко раздвигает сигналы в спектре ПМР, тем самым упрошая вид спектра (ср. данные табл. 3, 5). Эта процедура особенно эффективна и может рекомендоваться для интерпретации структуры 2-арилиндолизинов. легко доступных по схеме Чичибабина из 2-алкилпиридинов и фенацилбромидов. Такой прием в частности был использован для доказательства направления селективного основного дейтерообмена по положению 5 в индолизиновом ядре [11]: ПМР спектр катиона 5-D-2-метил-6-нитроиндолизина в кислоте (в отличие от спектра нейтральной формы) не содержал перекрывающихся сигналов.

Особого внимания заслуживает использование спектроскопии ЯМР для доказательства уникального в химии гетаренов протонирования в ипсо-положение к акцепторной группе, обнаруженного нами ранес на примере 3-нитро- и 3-пивалоилиндолизинов [12, 13]. Структура 3Н-3-нитрокатиона подтверждена методом спектроскопии ЯМР ¹³С (рис. 1). Используя технику съемки спектра с селективной развязкой от протонов, удается отнести резонансный сигнал атома С(3), а его проявление в виде дублета (при использовании техники неполного подавления) однозначно доказывает образование именно *ипсо*-катиона.

Таблица 5

Заместители)-ti	2-K	3-14	5-11	6-ti	7-11	8-14
2 7-Mez-6-NO2	6.60	2.10	5.25	0 37	l	2.66	7.60
2-Me-6-NO2	6.75	2.20	5.30	9.50		8.80	7.80
1,2-Me2-6-NO2	2,30	2,15	5,30	9,80	_	9,00	7,90
2-Me-6-ÇOMe	7,66	3,41	6,29	10,23	3,1,4	9,53	8,72
2-Ph-6-COMe	7,6	7,8	6,15	9,70	2,95	9,04	8,20
2-Ph-6-CN	7.5	7.9	6,13	9,48		8,65	8.19
2,7-Me2-8-NO2	7,53	2,93	5,90	9,21	8,03	2,50	• _
2.5-Me2-8-NO2	7,85	3,06	5,50	2,67	7.90	9,23	P
2,5,7-Me3-8-NO2	7,12	2,79	5,27	2,79	7,52	2,45	
2-Me-8-NO2	8,14	3,00	6,10	9,72	8,40	9,62	
2-Me-8-CN	7,03	2,36	5,50	9,05	7,73	8,60	
2-Me-8-COMe	7,60	2,83	5,30	9,00	7,80	9,00	2.43
2-Ph-8-CN	7,6	7,8	6,18	9,25	7,85	8,78	_
2-Ph-8-COMe	8,36	7,8	6,06	9,16	8,10	9,09	2,98

Данные ПМР спектров катионов индолизинов в CF3COOH (d, м. д.)

1241

Спектральное доказательство образования *unco*-катиона можно провести с использованием спектроскопии ПМР (рис. 1). В спектре 2-метил-3-нитроиндолизина, растворенного в H₂SO₄, появляется синглет (7,50 м. д.), отсутствующий в растворе D₂SO₄. В последнем случае наблюдается к тому же медленное падение интенсивности сигнала протона 1-Н (7,45 м. д.), подвергающегося обмену на дейтерий. Слабопольный сдвиг при протонировании характерен для всех сигналов пиридинового цикла, за исключением сигнала 5-Н, который смещается в сильное поле вследствие устранения «*пери*»-влияния 3-нитрогруппы, выводимой из плоскости индолизинового ядра при *unco*-протонировании. (По аналогичной причине сильнопольный сдвиг сигнала 5-Н наблюдается и при *unco*-протонировании 2-метил-3-пивалоилииндолизина [13].)

Рис. 1. Спектры ЯМР илсо-катиона 2-метил-3H-3-нитроиндолизиния в серной кислоте:
А — спектр ПМР в серной кислоте; Б — спектр ПМР в дейтеросерной кислоте сразу после смешения; В — спектр ПМР в дейтеросерной кислоте через 1ч после смешения; Г — ¹³С ЯМР спектр в серной кислоте; Д — ¹³С ЯМР спектр в серной кислоте с неполной развязкой от протонов

Рис. 2. ПМР спектры 2,7-диметил-6-нитроиндолизина (II, CCl4), его катионного сигма-комплекса (I, CF3COOH) и анионного сигма-комплекса (III, CD3ONa/CD3OD). (Шкала δ, ТМС)

структурно эквивалентной реакцией образования Отметим. что 3H-3-нитроиндолизиния из 3-нитроиндолизина является протонирование 1-нитроинденил-аниона с образованием 1-нитроиндена [14]. Для указанной пары изоэлектронных аналогов наблюдавшиеся спектральные изменения (исчезновение «nepu»-влияния нитрогруппы при протонировании) совершенно аналогичны. Заметим также, что единственный нейтральный карбоцикл, для которого наблюдалось протонирование в ипсо-положение к нитрогруппе — 2,4,6-триметил-1-нитроазулен [15] — является л-изоэлектронным аналогом 3-нитроиндолизина. Следует подчеркнуть, что легкость образования катионных ипсо-интермедиатов в ряду 3-замещенных индолизинов позволяет рассматривать такие модели перспективными для решения до сих пор мало изученной проблемы создания шкалы ипсо-влияния заместителей.

Как было показано ранее [16], индолизины, содержащие электроноакцепторную нитрогруппу в положении 6 либо 8, проявляют довольно редкий — амбифильный — характер реакционной способности, а именно, выраженную склонность к реакциям как электро-, так и нуклеофильного присоединения и замещения. В частности 6- и 8-нитроиндолизины в равной степени легко растворимы в кислотах (формируя катионные сигма-комплексы Уэланда) и щелочах (образуя анионные сигма-комплексы Мейзенгеймера). По данным спектроскопии ПМР (см. рис. 2), атаке подвергаются в первом случае наиболее электроноизбыточный атом C(3), а во втором наиболее электронодефицитное положение C(5) [17]. Насколько нам известно, подобное π -амфотерное поведение углеродных атомов ароматической системы не имеет других прецедентов в органической химии.

E. B. Бабаев выражает признательность фонду Volkswagen Stifting за финансирование тематики, отраженной в настоящем обзоре.

СПИСОК ЛИТЕРАТУРЫ

- Pignure R. J., Robins M. J., Grants D. M., Robins R. K. // J. Amer. Chem. Soc. 1971. -Vol. 93. - P. 1887.
- 2. Jones R.A., Bean G.P. The Chemistry of Pyrroles. London: Academic Press. 1977. 525 p.
- 3. Teulade J. C., Escale R., Grassy G., Girard J. P., Chapat J. P. // Bull. soc. chim. France. 1979. N 9-10. P. 529.
- Witanowski W., Stefaniak L., Sicinska W., Webb G. A. // J. Mol. Struct. 1980. -- Vol. 64. --P. 15.
- 5. Dainis I. // Austral, J. Chem. 1972. Vol. 25. P. 1003.
- 6. Бобровский С. И., Бабаев Е. В., Бундель Ю. Г. // ХГС. 1987. № 2. С. 203.
- 7. Бобровский С. И., Лушников Д. Е., Бундель Ю. Г. // ХГС. 1989. № 12. С. 1634.
- 8. Бобровский С. И., Лушников Д. Е., Бундель Ю. Г. // ЖОрХ. 1989. Т. 25. С. 2251.
- Бобровский С. И., Бабаев Е. В., Бундель Ю. Г. // Вестник МГУ. Сер. 2. Химия. 1989. Т. 30. — С. 389.
- 10. Бобровский С. И., Бабаев Е. В., Бундель Ю. Г. // ХГС. 1990. № 6. С. 758.
- 11. Бобровский С. И., Бабаев Е. В., Бундель Ю. Г. // ХГС. 1987. № 9. С. 1285.
- 12. Бобровский С. И., Бабаев Е. В., Бундель Ю. Г. // ЖОрХ. 1985. Т. 21. С. 673.
- 13. Бобровский С. И., Лушников Д. Е., Бундель Ю. Г. // ХГС. 1987. № 12. С. 1695.
- 14. Kerber R. C., Hodos M. // J. Org. Chem. 1968. Vol. 33. P. 1169.
- 15. Schultze J., Long F. A. // J. Amer. Chem. Soc. 1964. Vol. 86. P. 322.
- 16. Бабаев Е. В. Дисс...канд. хим. наук. -- М., 1987.
- 17. Babaev E. V. // Bull. soc. chim. Belg. 1992. Vol. 101. P. 823.

Московский государственный университет им. М. В. Ломоносова, Химический факультет. Москва 119899 Поступило в редакцию 26.05.95