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1. Introduction

There are two different pictures of molecular structure: the classical and the quantum-
mechanical. The classical picture is naive-empirical and is the chemical one; it is
connected with classical structural formulae, ball-and-stick models, the phenomenological
Lewis concept and the Gillespy rules for prediction of molecular geometry. This picture
now endures as the heuristic instrument for the planning of chemical synthesis, for
communication between experimental chemists, and for chemical education. The
quantum-mechanical picture is the physical one; it is based on the application of quantum
mechanical ideas to molecular structures and on quantum-chemical calculations of different
degrees of sophistication. Many attempts have been made in theoretical chemistry to find
some symbiosis between these two different levels of description of molecular structure;
only in recent years the desired compromise seems to have been found in the topological
nature of both the quantum-mechanical and classical models of the molecular structure.

Topology is not just graph theory, and similarly chemical topology is not just the use of
a graph as an image of a molecular structure or chemical reaction1'2 as it is usually
considered.3 One of the main ideas in classical topology4-6 is to study spaces which can
be continuously deformed into one another, and to find the invariants of such spaces.
Some known chemical applications of these ideas (e.g. the topological invariants of sur-
faces and their critical points) are used to describe electron density mapslb or potential
energy surfaces1c; some topological invariants of the polyhedrons are also used to
understand the electron-counting rules in the chemistry of clusters.7 In the cited
approaches, the ideas of topology are applied to the quantum-chemical picture of mole-
cular structure. It seems that there is only one work1d devoted to the topological
description of classical structures and the electron-counting rules for usual molecules with
localized bonds.

It is the aim of this paper to introduce special spaces, two-dimensional manifolds or
surfaces, as new images of molecules with localized bonds, starting only from the classical
picture of the molecular structure. One can easily get these surfaces from graphs
corresponding to the usual Lewis diagrams of molecules. Some qualitative chemical
concepts, which are rather poorly formalized in the language of graph theory, seem to be
more clear from the point of view of surface topology. Moreover, because the topological
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invariants of the surfaces are based on the usual chemical electron-counting rules, it seems
that the general classical pictures of molecular structures and reactions is closer to
manifold topology than to the graph-theoretical description. The suggested approach and
its further development seems to be a new branch of interaction between topology and
chemistry.

2. From a Lewis Diagram to the Pseudo-graph and Graphoid

Consider a Lewis diagram L(M) = (Z,N, {qi) of a molecule M with localized bonds8a and
with Z valence electrons and N atoms, where the i-th atom contains qi valence electrons
(for the non-transition elements qi coincides with their group number in the Periodic
System). For the given Lewis diagram the unique molecular pseudo-graph (a multi-graph
with loops9) G(M) = (V,R, {deg vi) can be found, where the number of vertices V is the
same as N, the number of the edges R is equal to Z/2, the degree of any i-th vertex deg
vi; is equal to qi, and any loop of the graph G(M) corresponds to a lone pair in the starting
diagram L(M) (Chart la). This definition (the importance of which has been discussed
earlier from different points of view10-12) connects the Euler equation for a (pseudo)graph9

with the valence electron count in a molecule:

S deg vi = 2R = S qi = Z (1a)
V N

(A somewhat similar definition of a molecular pseudo-graph has been independently used
by Kwasniska13 in his graph-theoretical approach to organic reactions.)

If the starting molecule contains Z valence electrons and if L of them are unpaired, then
the corresponding topological image of a Lewis diagram is no more the pseudo-graph.
Let us call a graphoid G'(M) = (V,R,L,{deg vi) the object which one can get from the
(pseudo)graph G(M) = (V+L,R+L,{deg vi) by deleting L free (terminated) vertices but
not the edges incident to them. Any graphoid has two sorts of edges, R usual and L hemi-
edges, as well as two sorts of vertices, V usual and L pricked, i.e., it has as its subset a
(V,R-(pseudo)graph14. It is obvious that the usual edge of a graph in the topological sense
is homeomorphic to the closed interval [a,b], while the hemi-edge (without one vertex or
point) in G'(M) is homeomorphic to the one-side open interval [a,b). On the Chart 1b this
type of hemi-edge is shown as the line starting from a vertex to infinity. Because these
hemi-edges participate L-times in the sum deg vi, the Eq. (la) for the open-shell molecules
and their graphoids should be written as in Eq.(lb):

S deg vi = 2R - L = S qi = Z (1b)
V N

We want to mention that in both of the above equations the equality qi = deg vi for the
i-th atom is conserved 14. This means that for any molecule which can be described by
more than one Lewis diagram, only one resonance structure (perhaps a non-octet one)
should be chosen to construct the pseudo-graph (graphoid) due to this equality. In the
case of charged molecules (as well as ylides or betaines) the charges should simply be
localized on the appropriate atoms and the necessary number of protons should be added
or deleted in these nuclei to get a neutral isoelectronic species with the corresponding
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change in the qi and deg vi value.11 Thus, the isovalent molecules C2H5
- and CH3OH2

+,
as well as their isoster BH3OH2

+ and the ylide +NH3CH2 which are isostructural to the
neutral CH3NH2 after this "charge annihilation," have the isomorphic unlabeled pseudo-
graphs (Chart 1c).

It is easy to get cyclomatic number C for any connected pseudo-graph G(M) (see the left-
hand equality of Eq.(2)). All the loops and the independent cycles between the multiple
edges are also included in the cyclomatic number.9 For graphoids G'(M) L hemi-edges
do not participate in any cycle; that is why one should cut them and calculate the C-value
by using the same equation for the (V,R)-subgraph of the G'(M). In general, the
cyclomatic number for any Lewis diagram has a simple chemical sense as the sum of the
(independent) cycles, multiple bonds, and lone pairs, and is determined only by the
balanced equation between the number of valence electrons, atoms, and unpaired electrons
(see the right-hand equality of Eq. (2)):

C = R - V + 1 = 1/2(Z - L) - N + 1 (2)

3. From Graph (Graphoid) to Surface

Consider any (pseudo)graph or graphoid to be in the real three-dimensional space R3. Let
us add to any edge and vertex a very small volume of surrounding space. This operation
not only conserves completely unchanged the starting graph(oid) structure, but it also adds
a new interesting property to the starting object. Now a two-dimensional boundary exists
between the internal and external parts of a graph in R3. Consider our graph to consist
of empty rubber tubes (edges) which are also empty in their cross-sections (i.e. in the
internal vertices), but they are closed in the places of the usually terminated vertices and
open on the ends of the hemi-edges.

It is obvious that the resulting object is the two-dimensional manifold in R3 or the two-
dimensional surface S(M) corresponding to the starting Lewis diagram L(M). By a simple
continuous deformation one can easily get some canonical form of this surface, e.g. a
sphere with C-handles and L-holes or S(C,L), (see Chart 2a,b). This surface is orientable;
it is closed if L=0 and open if L differs from zero. It can be found elsewhere that the
pair (C,L) is quite enough to classify all non-homeomorphic orientable and connected W-
surfaces.4-6

The connected R2-surfaces S(C,L) can be described by their Euler characteristic c which
is one of the topological invariants, i.e. it is unchanged on topological deformations.4-6

It is not necessary to make a triangulation of the surface to get the c value: it depends
only on the number of holes L and handles C (see the left-hand equality of Eq.(3)).4 The
use of Eq. (2) shows that for the starting Lewis diagram L(M) its Euler characteristic c
depends simply on the balance between N and Z, (see the right-hand equality of Eq. (3)):

c = 2-2C-L = 2N - Z (3)

4. What is the Topological Homeomorphism from the Chemical Point of View?

The resulting map L(Z,N,L,{qi} => G'(V,R,L,{deg vi}) = > S(C,L) distributes all
the Lewis diagrams on the homeomorphism of their surfaces S(M) on equivalence classes.
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Topological homeomorphism in mathematics is a very crude property showing a similarity
of surfaces; nevertheless, this type of topological identity seems to be the important one
as a first step in understanding the similarity in a geometrical sense. Following this
analogy, it is interesting to compare the homeomorphism of Lewis diagrams as a crude
test of the similarity of the structures and chemical behaviors of the corresponding
molecules.

There are some general empirical types of chemical similarity both of organic and.
inorganic molecules (see references 11 and 12) which are based on the usual isoelectronic
or 7r-isoelectronic analogies, isostructural and homological series, etc., for example:

a) isovalent molecules differing only by the number of the period of any atom in
the molecule (e.g. CH3NH2-SiH3NH2-CH3PH2-SiH3PH2-GeH3AsH2 etc.);

b) isovalent molecules differing in charge (e.g. H3O
+-NH3-CH3

-);
c) isosters (alkanes-borazines; CO-N2; CO2-N2O etc.);
d) any number of the resonance structures;
e) all types of tautomers and isomers;
f) classical homologs, differing by one or more CH2-group;
g) 7r-isoelectronic molecules with the same number of pi-electrons (e.g. pyrrol -

benzene - borepine, or "pseudoazulenes": azulene - indolizine - pyrrolo[1,2] -
aimidazole);

h) pi-isoelectronic molecules with the same number of pi-electrons differing in the
charge (cyclopentadienyl-anion-benzene-tropilium-cation);

i) members of isostructural series of boron hydrides differing in the BH-fragment
(isostructural closo-, nido- or arachno- series, see reference 8b).

All the members of each of these series a) - i) have topologically identical (homeo-
morphic) Lewis diagrams.

It should be mentioned that the homeomorphism in the series a) - e) simply follows our
definition of L(M), G'(M), and S(M) (Chart 1c), while the topological identity of the
molecules in the series f) to i) (differing by the well-known homological fragments -CH2-,
-BH-, and -CH+-) proves that the concept of the homeomorphism is a very natural and
reasonable one for further chemical applications.

It is a well-known phenomenon in mathematical chemistry that some properties of
molecules are very similar when the topological indices of their molecular graphs (e.g.,
the Randic, Hosoya, or Wiener number) coincide.7,15 Corresponding to this rule, c
should be considered as some global (in comparison with the other indices) index of the
molecular structure. Its degeneration [or the topological identity of S(M)] corresponds to
some global chemical similarity of the molecules. This is the case for the examples of the
series a) - i) mentioned above. Another example is the well-known empirical chemical
analogy between lone pair, double bond and 3-4 membered cycles16; this fact should
correspond to the topological homeomorphism of these structural fragments to a torus.

On the other hand, the difference in the c -value [or in the genus of the closed surfaces
S(M), i.e., the number of handles C for the non-radicals] permits us to classify the non-
homeomorphic types of molecules in a linear order as is usual for orientable surfaces in
topology.4-6 The simple chemical sense of the C-number is clear: it is a generalization
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to any inorganic compound of the common organic-chemistry idea of the degree of
saturation. For any homological CnH2n+c series c it is simply its Euler characteristic; any
molecule could be more saturated, not only by hydrogenation, but also by coordination
with an electrophile.

5. The Invariance of the Euler Characteristic in Chemical Reactions.

In the classical Lewis concept of the two-electron and two-centered bond there are only
two possibilities to form or to break the bond: The homolytic and the heterolytic. In the
simplest case the hydrogen molecule [for which S(M) is a sphere, c = 2 ] could be formed
from two atoms (each of which is homeomorphic to a sphere without a point or to a
hemisphere, c=1) or from a proton and a hydride ion (a sphere, c = 2 , plus a torus,
c = 0 ) . From the surface topology point of view it means gluing the surfaces to a sphere
in this manner: to glue the 1-dimensional cycles of the hemispheres in the first case, or
to glue the sphere into the hole of the handle in the second case. It is important that in
the both operations the Euler characteristic c is the additive value. Other examples also
prove this consideration (Chart 3). This principle can be generalized to be the Main
Theorem.

6. The Main Theorem

The total Euler characteristic of the Lewis diagrams with localized bonds stays
unchanged in chemical reactions.

6.1. Proof

Consider an ensemble of Ks molecules (Ns, Zs, and Ls are the general number of atoms,
and valence and unpaired electrons, in the ensemble) which transforms during the
chemical reaction to a new ensemble of the Kf molecules (where s and/indicate starting
and final) with corresponding values Nf, Zf, and Lf. The non-connected graphs (graphoids)
with Ks (Kf) components and corresponding Vs and Rs (Vf and Rf) are determined as
mentioned above for the Lewis diagrams of the starting and final ensembles corresponding
to Eqs. (1a) and (1b).

For any non-connected graph with K components, Eq. (2) should be changed to Eq. (4)
[see the left-hand equality of Eq. (4)],9 and after mapping from the graph to the surface
with K components4-6 the left-hand equality of Eq. (3) should be changed to Eq. (5):

C = R-V + K=1/2(Z-L)-N + K (4)

c = 2K-2C-L (5)

The resulting Euler characteristic c for the ensemble of the molecules after the
combination of the Eq. (5) with Eq. (4) is equivalent to the right-hand equality of Eq. (3):

c = 2K-2C-L = 2K-2 [1/2(Z-L)-N + K] - L =

= 2K-Z + L + 2N-2K-L = 2N- Z
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Chart 3.
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Comparing the values cs, and cf for the starting and final ensembles of the molecules one
can easily get Eq. (6):

Dc = cs - cf = 2(N f -N s - (Z f -Z s ) = 0 (6)

which is equal to zero due to the conservation of the valence electrons and the atoms in
a chemical reactions. Thus, the Main Theorem is proved.

6.2 Discussion

The principle corresponding to the Main Theorem we call the conservation of molecular
topology in chemical reactions. It is of interest that the conservation of the pure
topological property c in classical chemistry follows from the conservation of N and Z,
i.e., from the physical conservation of matter and charge. One can say that an imaginary
space with classical chemical structures is mapping to itself during the chemical reactions.

The invariance of x is not dependent on the changes of neither the number of molecules
(DK), nor on the unpaired electrons (DL), nor the sum of the lone pairs, multiple bonds
or cycles (the degree of saturation, DC alone). Because all the members of the triad
(C,L,K) are topological invariants in the surface topology, the combination of Eqs. (5) and
(6) gives Eq. (7), which is an important chemical consequence:

Dx = 2 DK - 2 DC - DL = 0 (7)

It follows from Eq. (7) that only five types of interconversions of topological invariants
(K, C,L) are permitted in chemical reactions for molecules with localized bonds:

DL = 2 DK (7a)

DC = DK (7b)

DL = -2 DC (7c)

DL = 2(DK - DC) (7d)

DK = DL = DC (7e)

(where A corresponds to the difference between the final and starting parameters). All the
possible types are symbolically shown on the Chart 4.

All of Eqs. (7a) - (7e) simply follow from the Eq. (7): when one member of the triad
(C,L,K) is conserved in a reaction, the two others interconverse according to Eq. (7); the
conservation of only the two parameters (i.e. the sudden appearance or disappearance of
only one invariant) is impossible in chemistry. For instance, a handle (i.e., lone pair,
double bond, or cycle) can appear in a chemical reaction from any of the following:

a) the immediate disappearance of only two holes [see Eq. (7c)]), corresponding
in chemistry to intramolecular radical recombination, including triplet-singlet
transformations of biradicals,
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b) the immediate appearance of a new component [see Eq. (7b)], e.g., conversion
of alkanes to cycloalkanes,

c) corresponding changes in the number of holes and components [see Eq. (7d)],
e.g., formation of cyclobutane from two triplet ethylenes,

d) the appearance another handle; the appearance of a handle from nothing is
forbidden. A good example is the well-known cycle-chain tautomerism: it only
seems that a cycle is built from a chain. The cycle which is usually formed,
e.g., from an electrophile-nucleophile interaction, has already existed in the
"chain" as a lone pair (i.e., hidden cycle) on the nucleophilic center.

The suggested five types of the conservation and interconversion of the topological
invariants are good starting points for the further topological classification of chemical
reactions. Each type should be subdivided to the different classes, e.g., on the
redistribution of the invariants between different surfaces, following to the size of cycles,
etc.

7. Conclusion

The discussed novel approach could be considered as the first step in our program of
"topologization of chemistry" starting from a classical, and not quantum-mechanical, point
of view. This gives possibility for physicists to better understand the logic of classical
chemistry; for chemists to prove once more that chemistry is not only a descriptive
science, but also an exact science; and for mathematicians to find new fields of
application. In our further communications we intend to apply some other ideas of
manifold topology (fundamental and homology groups, topological images of hypergraphs,
etc.) to other classical concepts of chemistry (localization and delocalization, conjugation
and hyperconjugation, pi-rich and pi-deficient molecules).
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