
MOLECULAR DESIGN OF HETEROCYCLES. 

I. RECYCLIZATION GRAPHS AND STRUCTURAL HIERARCHY OF THE 

TRANSFORMATIONS OF HETEROCYCLES* 

E. V. Babaev and N. S. Zefirov 

A new method for modeling the processes involved in the transformation of the ring ofheterocyclic systems by 
means of recyclization graphs, the vertexes and ribs of which correspond only to the atoms and skeletal bonds 
that enter into the starting or final heteroring, is proposed. An analysis of the structures of such graphs and 
the use of various types of labels for the ribs and vertexes make it possible for the first time to construct a 
convenient and flexible hierarchy of recyclizations from the principle of the structural similarity in their 
recyclization graphs. The effectiveness of the approach is illustrated by examples of the classification of known 
interconversions of azoles and azines and by the prediction of new recyclizations. 

INTRODUCTION 

The goal of the current cycle of research was to demonstrate the effectiveness of the use of non-numerical mathematical 

methods (the theory of graphs, combinatorial analysis, topology) in the design of heterocyclic structures and planning methods 

for their synthesis and reactions. Interpreting the term "design" in a broad sense, we propose to combine the development of 

new theoretical constructs and computer programs for the needs of the chemistry of heterocycles with their experimental 
realization and verification. 

This communication is devoted to the problem of the structural classification of an extremely important and extensive 
family of reactions, viz., processes involving ring transformation (or recyclizations) of heterocyclic systems. Recyclization 

reactions hardly constitute the most vivid page in the chemistry of heterocycles; these reactions, which frequently are extremely 
elegant and discovered by chance, often lead to cyclic structures with an unexpected distribution of the heteroatoms and 

substituents or products, the procurement of which by other methods is difficult or impossible. Name reactions of the Yur'ev, 
Zincke--Ktnig, Hafner type or the Dimroth, Cornforth, Boulton--Katritzky, Kost--Sagitullin, etc. rearrangements may serve 

as well-known examples of recyclizations. Currently, a tendency for ring transformation has been observed for the 

overwhelming majority of known heterocycles, particularly for heteroaromatic heterocycles. The mechanisms of 
transformations of this sort are diverse, and it is often extremely difficult to propose a structure scheme of a transformation 

by considering only the initial and final heterorings. Despite the enormous amount of factual material in this area and the 

profusion of reviews that encompass large classes of recyclizations (see, for example, [ 1-24]), one must acknowledge that there 
is no general rational classification of the transformations of heterorings in accordance with a structural principle. As a 
consequence, it often proves to be difficult to establish, for example, the real degree of novelty of a recyclization or 

rearrangement declared as being "novel." It is evident that the degree and measure of the structural similarity to reactions that 
are already known must be initially determined in some way. 

In most of the existing reviews on recyclizations the question of a unified structural classification has, for all practical 
purposes, not been broached; particular aspects of this problem have been touched upon only in individual review publications. 

In the classic monograph by van der Has, for example, recyclizations are not so much classified as they are put in order with 

respect to the sizes of the starting and final rings and the number and nature of the heteroatoms [ 11], whereas in publications 
by Shvaika [2, 3] on the hydrazinolysis of azoles it was suggested that a structural feature, viz., the size of the fragment of 
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the starting ring used for the construction of the new heteroring, be used to ascertain the structural similarity of recyclizations. 
A similar idea, developed by Balaban, has found application for the classification of diverse types of transformations of 
pyrylium salts [4, 5], as well as t,3-thiazinium salts [6]. In a recent review [7] L'abbe proposed a different (alternative) way 
for the convenient classification of types of rearrangements of azoles, viz., according to the size of the side chain in them that 
is involved in the formation of the new ring. (For example, in rearrangements of the Dimroth, Corntbrth, and 
Boulton--Katritzky type this value is 1, 2, and 3.) In other reviews (see, for example, [8-24]) either particular transformations 
of certain classes of heterocyclic systems or correlated reaction schemes that link heterorings with different distributions of the 
heteroatoms or annelated rings are usually discussed. 

Let us note that the most developed of the above-mentioned classification schemes use, in the final analysis, the 

principle of structural similarity of the heterocyclic molecules (or the different types of fragments contained in them) but not 
the similarity in the reactions, whereas substantial progress has been made in the last 10-15 yr in the development and creation 
of mathematical models, particularly the use of the language of the theory of graphs, for the description and structural 
classification of chemical reactions [25-32]. 

The key idea of the approaches associated with classifications of reactions on the basis of the theory of graphs consists 
in replacement of the usual chemical equation of the reaction (which contains, obviously, left-hand and right-hand parts) by 
a certain different object, viz., a unified structural diagram of the distribution of bonds in the course of the reaction; to obtain 
this diagram one must initially establish a correspondence between the atoms (and bonds) of the left-hand and right-hand parts 

of the chemical equation and then accomplish "superimposition" of the starting compounds and the reaction products [25, 28, 
30]. The resulting diagram -- a graph of the redistribution of the bonds --  concentrates all of the information regarding the 
cleaved or newly formed (during the reaction) bonds (the remaining unchanged atoms and bonds are usually disregarded). Such 
"reaction graphs," which are named differently in different approaches, were subsequently used for different purposes --  for 
example, to establish the degree of structural similarity of reactions, to codify them conveniently, and to solve problems 
involved in planning the synthesis of compounds or planning new reactions [27, 28, 31, 32]. 

We previously noted the effectiveness of the use of diagrams of the redistribution of bonds for the classification of 
recyclizations of heterocycles for the first time in [33]; subsequently, in analyzing the principal structural tendencies of the 
transformation of the ring of azoles [34], we concluded that it was necessary to create graphs of a special type, viz., 
recyclization graphs (or graphs of the redistribution of the ring bonds) that were oriented toward the solution of the problems 
of the chemistry of heterocycles. In the present research we examined a generalization of this approach that leads to a 
convenient [in a theoretical (and methodical) respect] hierarchical structural classification of recyclizations. This classification 

can be used effectively for both the systematization of the already available voluminous experimental material on the 
transformation of rings and for the prediction of fundamentally new -- unprecedented -- examples of recyclizations. 

DEFINITIONS AND TERMINOLOGY 

As is usually accepted, we will consider any transformation of a heteroring that includes a step involving opening of 
the starting ring and the formation of a final ring in any sequence as a recyclization (or ring transformation). We will limit 
ourselves to an examination of monocyclic heterocycles, adding to them from the number of condensed systems only those in 
which the annelated rings have no more than one common bond (for example, the usual type of benzannelation as in indole 
or acridine). We will call the ring transformation (RT) simple (SRT) if the following three conditions are fulfilled: 1) the 
intermediate formation of any different rings (beyond the formation of the final ring) does not occur during the recyclization; 
2) intermediate migration of atoms or groups of atoms does not occur during the recyclization; 3) the starting ring is converted 

to no more than one ring of the final heterocyclic structure. 
The overwhelming majority of known ring transformations are simple, particularly the large family of ANRORC 

reactions [1], "monocyclic" rearrangements of azoles [7, 14], and most intermolecular cycloaddition--elimination reactions 
(reactions of the Kondrat'eva type [19]). The recyclizations examined below in Schemes 1-3 give some examples of typical 
simple ring transformations for which conditions 1-3 are fulfilled. Less widely encountered ring transformations that are simple 
ring transformations (one of the conditions 1-3 is violated) include, for example, a number of photochemical rearrangements 
[1, 12, 21], some intramolecular cycloaddition processes (see, for example, [19, 22, 35], individual types of transformations 
with profound restructuring of the starting ring (of the type similar to the conversion of pyridinium salts to indoles [36]), and 
some other recyclizations (also see [34]). In the present communication we will restrict ourselves to an examination of only 

simple ring transformations. 
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In its most general form the central idea of our approach is based on principles that are extremely simple and clear 

to chemists: as soon as a recyclization mechanism is known, the skeleton of the starting ring can be readily discerned amidst 

the atoms and bonds of the final products, and, on the other hand, the skeleton of the final ring corresponds fully to specific 

atoms and bonds of the starting compounds. Having concentrated our attention only on such skeletal substructural rings (and 

ignoring all of the remaining details of the structures) one can markedly simplify the structural equation of the reaction. It is 

evident that the reaction mechanism sets up a strict (mutually single-valued) correspondence between the "ring" atoms (and 
bonds) of the left-hand and right-hand parts of the equation. As a result, precisely these atoms and bonds can be selected for 

superimposition of the starting and final structures (just as was done in the approaches examined above) in order to obtain the 
structural equation (or graph) of the recyclization. 

Let us give a more rigorous formulation. Let us define for an arbitrary simple ring transformation (SRT) (with a 

previously known mechanism) two types or graphs, viz., molecular graphs (for the starting and final compounds that participate 
precisely in this reaction) and a recyclization graph (for any reaction of the SRT type). 

As the molecular graph M s of the starting reactants let us choose from the set of atoms and bonds of the left-hand part 

of the chemical equation only those V atoms (the vertexes of the M s graph) and those tt s. skeletal bonds (ribs of the M s graph) 
that are either present in the starting ring or are included in the final ring. Let us similarly define the molecular graph of the 

final products Mf (with V vertexes and Rf ribs) as the very same V atoms and only those Rf skeletal bonds that are present 

in the final ring or were present in the starting ring; in this case we retain as labels in the M s and Mf graphs only the symbols 
of the heteroatoms and discard all of the remaining symbols, viz., the hydrogen atoms, the multiple bonds, and any substituents 

(including annelated rings). Although the same vertexes are selected for the construction of the M s and Mf graphs, it is clear 

that the number and/or distribution of the ribs in these graphs differ. An example of the isolation of the molecular M s and Mf 
graphs of Ia, b for a simple ring transformation (1) [37] is presented in Scheme 1; in this example only a part of the armelated 

pyrrole fragment of the starting indolizine (or the resulting indole) is selected for the construction of the M s and Mf graphs. 
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Having numbered the vertexes of the M s graph in a certain way, let us write the corresponding numbers of the Mf 
graph in accordance with the reaction mechanism. Let us examine the mental superimposition of the structures of the M s and 
Mf graphs in such a way that the pairs of vertexes with the same numbers are identical at the same vertex, while the 

corresponding pairs of ribs are identical at a certain new rib. Let us define the indicated superimposition of the M graphs as 
a new recyclization graph (RG) containing V vertexes; we will designate the ribs that are present in the M graphs and 

representable to the new ribs of the recyclization graph (RG) in the following way: by a dotted line (rib) if the rib is present 
only in one of  the M graphs but absent in another; by a bold line if the rib enters into the composition of  both the starting and 

final rings of  the M graphs; by a normal line if the rib enters into the composition of  only one of  the rings of  the M graphs. 
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An example of the superimposition of the M graphs Ia, b for SRT (1) and the resulting recyclization graph Ic are 

presented in Scheme 1.* From a formal point of view the RG is a certain labeled graph that contains labels at the vertexes 
(symbols of the heteroatoms) and ribs (the three indicated types or the "color" of the ribs, viz., dotted, bold, and normal). 

The inclusion of all three types of labels for the ribs in the same structure of the RG makes it possible, within the framework 

of a single reaction diagram, to follow the fate of each of the ring skeletal bonds of the heterocycle during the recyclization. 

From the algorithm for the construction of the RG it follows that the structure of the recyclization graph does not 

depend on precisely which molecular graph (M s or Mf) is taken for superimposition by the first, i.e., the recyclization graphs 
of the forward and reverse reactions coincide. 

Let us emphasize that the selection of the atoms as the vertexes for the construction of both the RG and the M graphs 

is determined by their affiliation with both the starting and final rings. For example, in reactions (2a) and (2b) [15] in Scheme 
2 the selection of a fragment as the molecular M s graph is dictated by the reaction pathway, i.e., by the matter as to which 
of the methyl groups is involved in the construction of the new ring. As a result, the same starting structure 2a -- depending 

on the type of transformation -- is represented by two different M s graphs 2b, c. 
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RECYCLIZATION GRAPHS AND THE STRUCTURAL SIMILARITY OF REACTIONS 

Following the above-presented algorithm for the selection of M graphs and the construction of recyclization graphs, 
it is easy to construct RG for any known recyclizations that are simple, as, for example, for the already known to the reader 

transformations of pyrylium salts (3)-(8) or pyrimidine (9) in Scheme 3; the resulting RG are represented in the scheme by 
diagrams 3a-9a. These reactions simultaneously illustrate processes involving transformation with expansion (3), contraction 

(7)-(9) or retention (4)-(6) of the size of the starting ring. 
Forms of Recydizafions. Let us note that the M s and Mf graphs are linked only for rearrangements (for example M 

graphs lc, 2b, c), while in all of the remaining cases (i.e., for processes involving the inclusion of an external reagent and/or 
the elimination of a fragment of the starting ring, which are illustrated by reactions (3)-(9), at least one of the M graphs must 

consist of more than one component. Let us select the number of components in the M graphs as a natural characteristic for 
the classification of the SRT with respect to forms. Designating the starting and final heterocycles by the symbols A and B 

*One can proceed to obtain the RG in an even simpler manner by immediately labeling with bold ribs in the M s graph the 
fragment of the ring involved in the formation of the new ring and by labeling with dotted ribs the cleaved bonds of the ring, 
having added the new dotted ribs that are necessary for the construction of the ring of the Mf graph. 
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and the external fragments incorporated into the skeleton of the ring (or eliminated from it) by the symbols X, Y .... one can 

immediately isolate three of the most important forms of recyclizations, which are symbolically represented by the following 

schemes: A --> B [i.e., rearrangements such as (1) or (2a)]; A + X --, B or A --, B + X [reactions with the incorporation or 

elimination of ring fragments such as (5) and (8)]; A + X --, B + Y [reactions with the incorporation and elimination of ring 

fragments such as (3), (4), (6), (7), and (9)]. (See Scheme 3.) 

It is evident that the SRT of the same form contain an equal number of dotted ribs in the structure of the RG. Let us 
also note that the affiliation with one form is determined only by the connectivity of the M graphs and has nothing in common 
with the kinetic order of the reaction (the connected M s graph, for example, may correspond to any bimolecular reaction such 

as, let us say, one of the ANRORC type). 

Go, G1, and G 2 Graphs. A comparison of the RG in Scheme 3 shows that the recyclization graphs of individual SRT 

may differ from one another either with respect to the structures of the graphs themselves or with respect to the number and 

distribution in them of the labels of the vertexes and/or dotted labels of the ribs. Precisely this fact can be used as the main 

criterion for ascertaining the degree of structural similarity of different recyclizations. With this in mind, let us examine three 

different types of recyclization graphs: let us call the recyclization graph defined above as the superimposition of M graphs 

and containing symbols of  the heteroatoms and three sorts of  ribs a graph of the G 2 type; let us define the G 1 graph as a G 2 

graph in which the labels of  the vertexes (the symbols of  the heteroatoms) are omitted," let us define the G O graph as a G 1 graph 

in which the dotted labels of  the ribs are omitted. 

Examples of G 1 and G O graphs (diagrams 3b-9b and 3c-9c, respectively) are presented for each of recyclizations (3)-(9) 
in Scheme 3. The significance of the introduction of additional constructions of RG is evident: by comparing various types 

of RG with one another one can uncover different aspects of the structural similarity of reactions that have identical Go, G1, 

or G 2 graphs. 

Families, Classes, and Types of Recyelizations. Let us examine the closest type of structural similarity of 

recyclizations -- the coincidence of the G 2 graphs corresponding to them. In this case we will state that the recyclizations 
belong to the same family. The type of family is fixed unambiguously by the skeleton and the location of the heteroatoms in 

the starting and final heterocycles (i.e., by the fixed pair of M graphs), and any variations in the degree of unsaturation, 

tautomeric structure, and the number and nature of the substituents (and/or condensed rings) therefore do not exceed the bounds 

of the family. Rearrangements (1), (2a), and (2b) may serve as an example of reactions of the same family. 

The next type of structural similarity is identical character (or, more precisely, isomorphism) of the G 1 graphs; we will 

state that SRT with identical G 1 graphs form the same class. Structurally similar SRT of various heterocycles such as, for 

example, recyclizations of pyrylium salts to isoxazoles and pyrimidines to pyrazoles, viz., reactions (7) and (9) with isomorphic 
G 1 graphs 7c and 9c, fall into the same class. 

Finally, let us assign to the same structural type those SRT, the G O graphs of which coincide. The recyclization type 

is the crudest type of similarity of SRT; coincidence of the size of a fragment (labeled in the G O graph by bold ribs) that is 

common to the starting and final rings serves as the determining factor of this similarity. The concept of type is conveniently 

used by comparing the SRT of a different form, as, for example, by comparing recyclizations with the inclusion and/or 

elimination of ring fragments with ordinary rearrangements. It is easy to see that rearrangements (1) and (2a, b) belong to the 
same type as reaction (4); the types of recyclizations (7)-(9) are also identical. 

Qualitative arguments regarding the degree of similarity of SRT can be formulated in rigorous form on the basis of 
an analysis of the structural characteristics of different types of recyclization graphs. 

STRUCTURE, SYMMETRY, AND CODES OF RECYCLIZATION GRAPHS 

Since RG reflect the different degree of structural kinship of recyclizations, let us pose the following problem: 

precisely how are the structures of the Go, G1, and G 2 graphs, i.e., the types, classes, and families of recyclizations, 

interrelated? The G O and G 1 graphs were constructed above by the removal of certain types of labels (vertex or rib) from the 

structure of the G 2 graph. The indicated procedure can be inverted by regarding the G l graph as a rib-labeled G O graph and 
the G 2 graph as a vertex-labeled G~ graph. 

Thus the relationship between various RG is purely combinatorial in character and is a variation of problems involved 
in the allocation of labels (rib and then vertex) in G O graphs. The number of nonequivalent rib labels in the G O graph 
determines the number of theoretically possible G 1 graphs, while the number of nonequivalent placements of symbols of the 
heteroatoms (labels of the vertexes) in the G 1 graphs determines the number of G 2 graphs. Problems of this type have been 
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Scheme 3 (continued) 
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investigated in detail (see the enumeration of substitution isomers in [38]) and are solved, for example, using Burnside's lemma 
[38-40] for cases in which it is known precisely bow a fixed number of labels must be placed and what the type of symmetry 

of the starting graph is, i.e., a G o graph in our case. 

Structure and Codes of G O Graphs. It is not difficult to demonstrate [34, 41] that G o graphs have a completely 

determined type of structure; namely, they are labeled bicyclic systems or graphs with a cyclomatic number equal to two [42]. 
In other words, any of them is representable in the form of a certain pair of annelated rings in which a fragment (bridge) that 
is common to both rings is labeled by bold lines (ribs). Diagrams 4c, 5c, and 6c, which represent three different types of 

fusion of six-membered rings, may serve as an example of this representation of G O graphs. In the general case, graphs with 
a cyclomatic number of two contain three rings, whereas only two of them are linearly independent [42]. (In this case any of 

the three rings, such as, for example, the ten-membered perimeter in the "bicyclic" molecular graph of naphthalene, can be 

regarded as linearly dependent.) Let us agree to regard as independent in G o graphs only those rings that contain a "bold" 

crosspiece (always only two of them) and to call them precisely rings of the G O graph. The dimensions of such annelated rings 
of the G o RG are evidently determined by the dimensions of the rings of the M graphs, i.e., of the starting and final 

heterocycles. 
The relatively simple type of structure of the G o graphs permits the introduction of a convenient codification of 

recyclization types [34]. Let K and L be the sizes of the starting and final rings of the SRT and N be the number of atoms 
in a fragment common to both rings (i.e., the number of vertexes in the bridge of the G O graph tabeled by bold lines). The 

ordered triad of numbers (or vectors) of the form KLN then unambiguously determines the structure of bicyclic system G O and 

the recyclization type corresponding to this graph. (For example, the code 564 denotes mutual transformation of the five- and 

six-membered heterocycles, such that the fragment made up of four atoms of the starting ring shows up in the new ring.) 

Enumeration and Codes of the G l Graphs. In comparing the structures of the G o and G 1 graphs we note that the 

G 1 graph is obtained by a certain labeling of part of the ribs of the G O graph by means of dotted lines. Above, the dotted rib 
was identified with a cleaved or tbrmed skeletal bond of the ring. For example, in the case of rearrangements, the G 1 graphs 

contained a pair of dotted ribs that were clearly located in different rings. If, therefore, one sets out to enumerate all of the 

possible G 1 graphs (classes of SRT) that correspond to rearrangements with a predesignated structure of the G O graph (a 
predesignated type of SRT), one should allocate the pair of dotted labels in the G o graph in all possible ways, provided that 

these labels turn out to be in different rings.* 
As a result, one can easily deduce (even by hand) the number of theoretical classes of rearrangements with respect to 

a predesignated type. For example, if a G O graph with the code 554 (diagram 10 in Scheme 4) is predesignated, only two 
nonequivalent G 1 graphs, viz., 10a, b, which contain a dotted rib in each of the rings, i.e., only two classes of rearrangements 
of this type, can exist. Both of these classes are well known in the literature as rearrangements of the Dimroth type and 

rearrangements of furoxanes [21] and are illustrated by reactions (10a) and (10b) in Scheme 4. 

*It is natural that only the "normal" ribs of the G O graph can be labeled with a dotted line, since, by definition, the ribs labeled 

by bold line are unchanged skeletal bonds. 
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The classes of recyclizations are conveniently characterized by simple codes of the G 1 graphs corresponding to them 

[34, 41]. For this it is sufficient to point out the precise location of the dotted bonds in the previous G O graph. In the case 

of rearrangements there are only two such dotted labels situated in different rings of the G O graph. Let us index the sequence 

of the normal ribs in the smaller ring of the G O graph: we will designate the rib closest to the bold bridge by the symbol a, 

the rib next to it by the symbol b, etc. Similarly, let us index by means of the same symbols a, b, c... the normal ribs in the 

other (larger) ring, commencing with the rib adjacent to the a rib of the first ring. The resulting code of the form KLN-ij 
unambiguously determines the class of the rearrangement.* The codes 554-aa and 554-ab correspond to the above-examined 
examples of reactions (10a) and (10b). 
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Combinatorial formulas for the number of G 1 graphs in connection with the structure of the G O graphs that precede 
them were previously deduced, and all of the possible recommendable codes of the form KLN-ij for rearrangements were 
tabulated [34]. Let us attempt to generalize the principle of codification of the classes of SRT for recyclization with the 
inclusion or elimination of fragments. In the general case the code of the recyclization class will be determined by the 

distribution of more than two dotted labels between the rings of the starting G o graph and can be written in the form KLN- 

(iKjKk K .... )(iLJLkL...), where the symbols in parentheses are the defined, in accordance with the same rules (and 
lexicographically ordered), sequence of dotted ribs in the K- and L-membered rings of the G o graph. In chemical practice the 

total number of letters in the code does not exceed four (two bonds are cleaved in the starting heterocycle, and two bonds are 

formed in the final heterocycle), i.e., the maximally long codes for recyclizations have the tbrm KLN-(ir, jK)(itjL). The codes 
of the G 1 graph for the examined recyclizations (3)-(9) are indicated in Scheme 3. 

G 2 Graphs. The following type of RG -- G 2 graphs -- are vertex-labeled G 1 graphs. To calculate the number of 
all possible G 2 graphs (the families of SRT) with respect to a predesignated G 1 graph (the class of the SRT) one must know 

the symmetry of the G 1 graph (determined by its group of automorphisms) and the number of labels (heteroatoms) of each type, 

including carbon as a label of equal standing. In this case for the computation of the nonequivalent labels, i.e., the G 2 graphs, 

one may effectively use Burnside's lemma [38-40]. Without dwelling in detail on the calculations, let us note, for example, 

that the number of theoretically possible families of rearrangements of the Dimroth type in the azole series (if one restricts 
oneself to only three labels, as, tbr example, C, N, and S) is 486; reaction (10a) gives an example of oniy one such family. 

Above it was noted that the G 2 graphs (obtained by superimposition of the M graphs) for the forward and reverse 
reactions coincide. The reverse is also valid: if recyclization graph G 2 is predesignated, a fully defined pair of M graphs, i.e., 

a pair of reactions, viz., forward and reverse, but not the recyclization pathway, corresponds to it.t To obtain a pair of M 

graphs from a given G 2 RG one can propose the following simple algorithm. Any of the rings of the G 2 graph is selected, 

and the dotted ribs of only this ring change to normal ribs; simultaneously with this, the dotted ribs in the second ring are 

removed, which gives the first of the M graphs. The repeated procedure, commencing with the second ring, gives rise to the 
second of the M graphs that determine the pair of reactions. 

*For the case K = L the symbols i, j from the set a, b, c... should be lexicographically ordered. 

t in a number of approaches [28, 32] the reaction graph contains special types of labels (for example, arrows or crossed-out 
lines) that indicate precisely which bonds are cleaved and which are newly formed; although such labels can naturally be 

included in the structures of the G 1 and G 2 graphs, this leads to a loss in clarity and will not be used in the present 
communication. 
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HIERARCHICAL CLASSIFICATION OF THE TRANSFORMATIONS OF HETEROCYCLES 

In its most general features, the above-examined structural interrelationship of various recyclization graphs makes it 
possible for the first time to propose a classification of the transformations of heterocycles in accordance with a hierarchical 
principle. 

Let us examine successively the levels of this hierarchy. 

1. Only a common "archetype" is set at the top of the hierarchical tree: the sizes of the starting and final heterocycles 
in the form of a pair (K, L). 

2. At the next level of the hierarchy one takes into account the fact that the heterocycles may have a different value 

(N) of a fragment corresponding to the unchanged part of the starting ring involved in the formation of the final ring. Allowing 

the N value to vary from unity to K < L, one can obtain all of the possible modes of annelation of the pair of K- and L- 

membered rings that determine the labeled G O graphs with KLN codes or recyclization types. 
3. At the new level one takes into account the number of components into which the starting ring decomposes or from 

which the final ring is formed, i.e., the form of recyclization is determined. It is clear that the number of cleaved and newly 

formed bonds, i.e., the overall number of dotted labels that can be allocated in the structure of the G O RG, is thereby 
established. 

4. The size of the fragment of the starting ring that remains unchanged and the total number of vanishing/developing 

skeletal bonds of the rings are known for a fixed type and form of the SRT. This makes it possible, on the basis of purely 

combinatorial considerations, to sort out all of the conceivable ways of cleavage and formation of bonds, i.e., the classes of 
recyclizations (the G 1 graphs) of a predesignated type (and form), via arrangement of a certain number of dotted labels at the 

ribs in each of the rings of the G O graph. 

5. As soon as one knows in precisely which positions of the starting ring the bonds are cleaved and the formation of 

precisely which skeletal bonds corresponds to the formation of a new ring, it is not difficult, on the basis of symmetry 

considerations, to sort out the theoretically possible starting and final heterocyclic systems (the families of recyclizations) that 
correspond to a predesignated class. This is achieved by allocation of the heteroatomic labels at the vertexes of a predesignated 

G 1 graph leading to a set of nonisomorphic G 2 graphs. 
6. The predesignated family of recyclizations (with an accuracy up to the reaction pathway) corresponds to strictly 

determined pairs of heterocyclic systems that contain only those substituents that are necessary for the construction of the final 

heterocycle or were previously introduced into the cyclic skeleton of the starting heterocycle (pairs of M graphs). At this level 

one can select a specific recyclization pathway. 
7. At the lowest level the predesignated (by the pair of M graphs) symbolic writing down of the transformation of the 

heterocycle corresponds to a set of specific chemical transformations, the components of which differ with respect to the degree 

of unsaturation, tautomerism, the presence of substituents, annelated rings, etc. 

Thus the hierarchical character of the proposed classification consists in the fact that the number and structure of the 

recyclization graphs of the lowest levels is strictly determined by the structure and symmetry of the RG of the highest levels. 

The indistinguishability of recyclizations at any level is eliminated on passing to the lower level. 

PATHWAY OF HETEROLYSIS OF THE BONDS 

The examined classification of the SRT is structural in character; nevertheless, the levels Of its hierarchy can be 
effectively supplemented by empirical data on the details of the mechanisms of SRT, particularly chemically significant 
information regarding the distribution of donor-acceptor centers in the starting molecule and regarding the pathway of cleavage 

of the ring bonds. 
Let us examine the rearrangement of the pyridine ring determined by the sequence of reactions (1 la) and (1 lb) in 

Scheme 5 (see [18]). In both cases heterolysis of the C--N bond and the formation of a new six-membered ring occur. It is 

not difficult to see that these are reactions of the same class (with identical G 1 graph l la  with code 665-aa) that belong to 
different families, whereas the undoubtedly important and profound chemical difference between them consists in the fact that 
in the first reaction (1 la) the electrophilic ring carbon atom is replaced by the electrophilic exocyclic carbon atom of the cyano 
group, while in the second reaction (1 lb) the nucleophilic ring nitrogen atom changes places with the nucleophilic exocyclic 
nitrogen atom. In other words, the numbers of electrophilic and nucleophilic centers in reactions (l la) and (l ib) do not 

coincide. 
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This result is readily reflected in the same structure of recyclization graph G ! for 1 la: let the electrophilic atoms (the 

E centers) be expressed at the vertexes of this graph by white dots and the nucleophilic atoms (the N centers) be expressed by 

black dots; reactions (1 la) and (1 lb) are then representable by different (colored) diagrams 1 lb and 1 lc (see Scheme 5). We 

will call the resulting G 1 graphs with colored vertexes G1(EN ) graphs�9 In such G1(EN ) graphs one takes into account not only 

the structural aspect of the redistribution of the bonds but also the chemical factor -- the donor-  acceptor nature of the atoms 
between which bonds are cleaved or newly formed. We will state that the SRT belong to the same sor t  if the G|(EN) graphs 

corresponding to them coincide; thus reactions (1 la) and (1 lb) belong to different sorts with an opposite orientation of the E,N 

centers. 
It is not difficult to see that, from the point of view of combinatorial analysis, the Gl(EN ) graphs are obtained from 

the starting G ! graph by nonequivalent coloring of the latter, i.e., by allocation of the labels (black and white dots) at the ends 

of the dotted ribs of the G 1 graph. If the dotted ribs in the G 1 graph are not adjacent, their ends must have the opposite color�9 

We have previously solved the problem of sorting out nonequivalent ways of such coloring in general form [34]; let us note 

that, since the number of GI(EN ) graphs changes (depending on the symmetry group of the starting G 1 graph) from one to four, 
it is not difficult to enumerate such families by hand. 

Since the G1(EN) graphs (like the G 2 graphs) are vertex-labeled G 1 graphs, their position in the hierarchy of 
recyclizations examined above is somewhat special: they can be regarded as an independent sublevel of recyclization classes. 

In turn, from the level of GI(EN) graphs one can pass to somewhat different (than were previously determined) M graphs, 
which we will call M(EN) graphs, which contain only black and white labels of the vertexes; the corresponding pairs of M(EN) 

graphs of reactions (1 la) and (1 lb) are presented in Scheme 5. Such M(EN) graphs with a previously designated distribution 
of the E,N centers contain important heuristic information, suggesting precisely which chemical functions should be present 

in the structures of heterocycles of any families in order that the SRT corresponding to them belong to the same sort. For 
example, the development of a black label in the GI(EN ) graph requires the presence in the M(EN) graphs (and the 

corresponding heterocycles, regardless of the distribution of the heteroatoms) of a function with a strictly fixed property of 

electron-donor character (nucleophilicity) such as, let us say, an amino or CH-acidic group, while a "white" label of the vertex 
requires, correspondingly, an acceptor (electrophilic) grouping of the carbonyl, cyano, or nitroso type. It is not difficult to 
convince oneself that the transformations of pyrylium salts under the influence of hydroxylamine (7) and the hydrazinolysis 
of pyrimidines (9) are reactions of the same sort. 

PROBLEM OF THE PREDICTION OF FUNDAMENTALLY NEW EXAMPLES OF RECYCLIZATIONS 

The examined classification naturally leads to the problem of "empty cells" -- unknown examples of recyclizations in 
different branches of the hierarchical tree. The prediction of unprecedented examples of rearrangements of various types, 
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forms, classes, etc. evidently requires reliable information regarding the recyclization graphs of already existing SRT and 

regarding their distribution over the levels of the hierarchy. 

The GREH (Graphs of REcyclizations of Heterocycles) computer program [44], which is, on the one hand, a unique, 

constantly replenishable data base and educational base of knowledge with respect to recyclizations of heterocycles and, on the 
other, an instrument for the prediction of fundamentally new heterocyclic transformations, is being developed by us on the basis 

of the approach set forth above in order to solve problems of this sort. Of course, the utilization of this program for prediction 
purposes presupposes the use in the last stage of both expert evaluation on the part of chemists and computational methods from 

the arsenal of modern quantum chemistry. Let us note that the successive classification of known literature examples of SRT 

and the statistics of encountering various types of RG are also independent and useful criteria of the expert evaluation of 

predictions. 
The methodology of the prediction of unknown recyclizations includes a general review of the literature, the 

construction for recyclizations of the RG corresponding to them, the search for various types of RG for which there are no 

prototypes in the form of reactions, the construction of a pair of M graphs, and expert evaluation of the starting compound that 
could undergo a previously unknown structural transformation. 

Our previous review of the diversity of the types of rearrangements of azoles [34] was the first example of predictions 

of this sort. As it turned out, the most widely spread rearrangements are those, the G 1 graph of which is representable by a 
code of the 55N-aa type (i.e., the cleaved bond of the starting ring is adjacent to the resulting bond of the ring being formed). 

In particular, the well-known classes of rearrangements of azoles of the Dimroth, Cornforth, and Boulton--Katritzky type have 

the corresponding codes 554-aa, 553-aa, and 552-aa (see reactions I, nI, v ,  as well as transformation VII with code 551-aa 

in Scheme 6). Rearrangements of other classes (with codes that differ from 55N-aa) are also encountered in the literature, 

although rather seldom, which leaves experimenters a broad field of activity with respect to the detection of genuinely new 

classes of azole--azole transformations. 
Only two recyclization sorts [two Gl(EN ) graphs] with opposite distributions of the donor and acceptor centers are 

theoretically possible for each of the classes of rearrangements with the code 55N-aa of the G 1 graph. Examples of pairs of 
rearrangements that differ with respect to sort are reaction pairs I and II and V and VI, while the Cornforth reaction III and 

SRT VII [44] do not have such antipodes. Thus the presented pairs of M graphs of transformations IV and VIII are promising 
prototypes for the search for azole rearrangements of previously unknown sorts. (See scheme 6). 

Let us attempt to carry out at least a qualitative examination of a problem of a more global nature -- the distribution 

along the levels of the hierarchy of mutual rearrangements of five- and six-rnembered heteroaromatic systems, the archetypes 

of the interconversions of which are fixed by (K,L) pairs of the form (5,6), (6,5), and (6,6). Let us note that, as before, we 

will restrict ourselves, first, to simple transformations of rings and, second, we will completely reject cases of inclusion and/or 

elimination of any fragments of the starting or final rings. 
An analysis of the literature data on such rearrangements shows that (as in the case of azole--azole SRT) the most 

widely spread transformations are those transformations of rings, the codes of the G 1 graphs of which are representable in the 
KLN-aa form. The structures of all of the theoretically possible G 1 graphs with this code for the mutual SRT of five- and six- 

membered rings are presented in Scheme 6. Let us note that the code aa for the G 1 graphs is unique: the total number of 

reaction centers (donor and acceptor) between which the bonds are redistributed is equal to three only for this code. (For any 

other distribution of letters in the code of the G 1 graphs the number of such centers of necessity should increase to four.) Thus 
the distinctive magic rule of the "minimal number of reaction centers," the violation of which may evidently lead to competitive 

processes such as, for example, cross side condensations, is operative. Thus a new strategic direction in the area of 
recyclizations of both azoles and azines could be the purposeful search for classes of SRT with codes of the G 1 graphs that 

differ from KLN-aa. 
Pairs of possible Gl(EN) graphs corresponding to transformations I-XXXVI are presented in Scheme 6 as an example 

of the prediction of new sorts of mutual transformations of five- and six-membered rings for all G 1 graphs of the aa type. If 
the corresponding reaction was found in the literature, its particular example (which does not reflect the statistics of 
encountering this given sort) is indicated. However, if the Corresponding sort of rearrangement is still unknown to us ("empty 
cell"), the structural scheme of the reaction is given in the form of a pair of M(EN) graphs, and GI(EN ) is included within 

the framework. 
Scheme 6 is preliminary in character, and in publishing it we will set several goals: 1) to draw the attention of 

experimental chemists to formal models of mathematical chemistry; 2) to expand the existing point of view with regard to 
recyclization processes as a whole and to discuss the merits and inadequacies of the idea of a structural hierarchy and the 
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Scheme 6 (continued) 

(5~6)-- Transformation of hetarenes 
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Scheme 6 (continued) 
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Scheme 6 (continued) 
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codification of recyclizations; 3) to begin the development of a unique computer data base relative to already existing 
recyclizations; 4) to stimulate experimental studies in the area of the search for genuinely unprecedented examples of 
transformations of heterocycles. 

As the computer data base grows, we hope to improve the results of Scheme 6 and also to publish atlases of analogous 
schemes for other types, forms, classes, sorts, and families of transformations of heterocycles. Any criticism, comments, 
additions, and counter examples to Scheme 6 will be gratefully accepted, particularly if they have the character of experimental 
refutation. 

With the intention in the future of attempting to limit the number of empty cells of Scheme 6 (and future analogous 
schemes) within the framework of our own experimental studies, the authors are open to collaboration with any other 
collectives. 
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SYNTHESIS AND PROPERTIES OF FUNCTIONALLY SUBSTITUTED 1,2- 

AZOLIDINES 

I. A. Motorina and L. A. Sviridova 

Results of investigations on the synthesis and properties of functionally substituted 1,2-azolidines are reviewed. 

Compounds having azolidine fragments in their structure have a broad spectrum of biological activity. Among 
derivatives of substituted isoxazolidines and pyrazolidines have been found substances with fungicidal [1, 2], herbicidal [3], 
antiinflammatory [4, 5], and antibacterial [6, 7] activity. N-Acylisoxazolidines and benzylpyrazolidines exhibit properties of 
minor tranquilizers [8, 9]. Isoxazolidine derivatives that are lysergic acid antagonists [10] and pyrazolidine derivatives that are 
good anesthetics [11] are also known. The isoxazolidine fragment is contained in alkaloids [12, 13], terpenes [14], condensed 
heterocycles [15, 16], some sugar derivatives [17, 18], and antibiotics [19]. 

Extensive investigations in the field of the chemistry of functionally substituted azolidines began in the middle of the 
1960's; in particular, there was especially rapid development of the chemistry of isoxazolidines after the appearance, in the 
t960's and 1970's, of publications on the valence-molecular-orbital theory and its application (together with calculations of 
molecular-orbital parameters) to 1,3-dipolar cycloaddition reactions. At the same time, there is virtually no published 
systematization of data on the synthesis and properties of functionally substituted azolidines. (There is only a review on the 
chemistry of isoxazolidines [20] containing data up to May of 1974.) The present review covers the literature for mainly the 
last 15-20 yr. We review data on the structure, methods for synthesis, and chemical properties of isoxazolidines and 
pyrazolidines having heteroatomic substituents (amino, hydroxy, alkoxy, hydrazino groups, etc.) at carbon atoms. 

1. STRUCTURE OF 1,2-AZOLIDINES 

All possible isomers of the substituent position in the ring (3- (a), 4- (b), and 5-substituted (c) derivatives) are known 
for molecules of functionally substituted isoxazolidines and pyrazolidines, 

a b c 

and stereoisomers are known for disubstituted azolidines. 
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