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Abstract 

A special type of reaction graphs - the ring-bond-redistribution graphs - is used 
as a new model for description, classification and enumeration of ring transformation 
reactions of heterocycles, particularly of the class of degenerated heterocyclic 
rearrangements. Combinatorial formulae for enumeration of all the possible degenerated 
rearrangements for heterocycles with only one heteroatom are proposed. 

1. Introduction 

Heterocycles form one of the most important and well-investigated classes of 
organic molecules due to their occurrence in the human body and wide spectra of 
biological activity. One characteristic of the chemistry of heterocycles consists in the 
reactions of ring transformation or recyclization, i.e. easy opening of the starting 
heterocyclic ring and easy closure into a new (or the same) one. This ability of 
heterocyclic compounds was discovered more than a century ago and caused the now 
highly developed and extensively reviewed branch of organic chemistry [1-10]. 
Because this type of reaction is independent of the nature and size of the heterocyclic 
ring, it is a useful tool in planning synthesis of target organic compounds. Nevertheless, 
the general picture of heterocyclic ring transformations is rather complicated: they 
are poorly classified, and there is still not any appropriate mathematical model 
capable of rationalizing this interesting and beautiful class of organic reactions. It 
seems that the first (and unique) attempt to apply the methodology of graph theory 
to this subject was an approach by Balaban [5,7], where labelled subgraphs of the 
pyrillium ring (incorporated into a new heterocyclic nucleus) have been used to 
classify pyrillium ring transformations. 

Different types of mathematical models have been suggested to describe and 
classify chemical reactions; some of them use ideas of graph theory, for instance, to 
analyze the redistribution of bonds via chemical reaction [11 - 15]. However, tautomerism 
of heterocycles (especially typical for substituted heteroaromatics) makes difficult 
the general use of such formal models (e.g. graphs of bond redistribution) for the 
general description of heterocyclic rearrangements and ring transformations (see the 
discussion in ref. [16]). In our early review on ring transformations of azoles, we had 
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an idea for a new type of reaction graphs for the needs of heterocyclic chemistry 
[16,17]. This type of graphs, which neglect t a u t o m e r i s m -  the ring-bond- 
redistribution graphs - has been proposed to formalize and classify the known 
recyclizations of 5-membered heterocycles and to predict some unknown sorts of 
azole rearrangements. The present article is devoted to the further development of 
this approach: a brief analysis of some combinatorial properties and relations for 
the ring-bond-redistribution graphs and an application of the approach to enumeration 
of degenerated heterocyclic rearrangements. 

2. Definitions 

We shall use the term heterocyclic ring transformation (HRT) for any reaction 
containing the steps of heterocyclic ring opening and ring closure in any sequence; 
the only requirement is that at least one (or more) atoms of the starting heterocyclic 
ring should be incorporated as a fragment in the final ring. HRT can contain any 
number of starting reagents and any number of final products. 

We call the HRT to be simple (SHRT) if 

(a) only one ring of the starting heterocycle is transformed into only one ring 
of the final molecule, 

(b) there is no transient formation of cycles except the formation of the final 
cycle, and 

(c) there are no transient permutations of the atoms belonging either to the 
starting or to the final heterocyclic rings. 

A lot of known molecular HRTs are SHRTs; this is also true for most of the 
known heterocyclic rearrangements (HCRs), particularly for such well-investigated 
"named" reactions as the Dimroth, Comforth, and Boulton-Katri tzky HCRs for 
azoles and azines [1,2,9, 10]; the reactions in figs. 1 and 2 are also SHRTs*. To 
avoid confusion with the fused heterocycles, let us consider their HRTs to be 
SHRTs if fused rings have only one pair of common atoms (e.g. as is usual for 
benzannulation in indole, quinoline, etc.), and if the presence of fused rings does 
not violate conditions (a)-(c).  

Let us now consider any SHRT. The atoms of the final structure should be 
numbered in accordance with the numbers of the starting structure and the mechanism 
of HRT. Two types of graphs - molecular graph and ring-bond-redistribution 
graph of SHRT-  are determined. 

A molecular graph (M graph) of SHRT is determined for starting reagents 
(symbol s) and final products (symbol f) as the pairs Ms(V, Rs) and Mf(V, Rf), where 
the vertices V and the edges R of the M graph correspond only to the atoms and 
bonds which are present either in the starting or in the final cycle. The symbols 

*Reactions (1), (3)-(7) are taken from reviews [1,3], reaction (2) from ref. [19]. 
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of heteroatoms, as well as hydrogen atoms, multiple bonds, substituents and any 
fused rings should be omitted in the M-graph structure. Examples of M graphs la 
and lb for SHRT (1) are shown in fig. 1. M graphs are obviously monocyclic 
graphs; both Ms and Mf graphs contain an equal number of  vertices but differ by 
the number and/or distribution of edges. For SHRTs that are usual intramolecular 
HCRs, M graphs are connected. Non-connected M graphs correspond to intermolecular 
SHRT only if the part of the starting (final) cycle is eliminated (entered) via 
reaction. 

This pair of  molecular Ms and Mf graphs is used to construct the graph of  the 
SHRT-reaction - the ring-bond-redistribution graph (RBR-graph) or GI graph: Ms 
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and Mf graphs of the starting and final structures are "superposed" according to the 
matching vertices with identical numbers. The resulting G1 graph of reaction contains 
the same number of vertices (as in M graphs) and edges of different types, designated 
by 
- s o l i d  lines, if the edge is present in both Ms and Mf graphs, 
- d a s h e d  lines, if the edge is present only in one M graph, and 
- b o l d f a c e  lines, if the edge belongs to both cycles of M graphs. 
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The necessity of each type of labels in the GI graph is evoked by a reasonable 
requirement to present maximal information on the appearance (disappearance) or 
conservation of any skeletal ring bond of the final (starting) cycle at the same 
structure of  a reaction graph. An example of the superposition 2 of M graphs la 
and lb and the resulting G~ graph 3 for rearrangement (1) are shown in fig. 1. 
Followig the definition, RBR graphs of direct and reverse reactions coincide. 

. General properties and utilization of RBR graphs 

The first important property can be formulated as: 

THEOREM 

An RBR graph G~ for any SHRT is bicyclic; its structure corresponds to a 
pair of cycles with at least one common vertex. 

The proof of this theorem simply follows our definitions of the simple HRT, 
M and RBR graphs. In fact, both Ms and Mf graphs contain only one cycle; any 
vertex and any edge of Ms, Mf or G1 graphs belongs either to the starting cycle or 
to the final cycle. All these vertices and edges are present in the structure of the 
RBR graph, so it cannot contain more or less than two cycles. There are also no 
vertices or edges which do not belong to one of the two cycles, so the structure of 
the RBR graph can be only the pair of cycles with at least one common vertex. 

In general, one can find three cycles in the structure of RBR graphs (e.g. the 
consequences 1234781, 1234561, and 1874561 for the Gl graph 3 in fig. 1); however, 
only two cycles are linearly independent for the graphs with cyclomatic 
number 2 [20]. To avoid confusion, we select the cycle to be independent only if 
it contains boldface-labelled edges, and below use the term cycle of RBR graphs 
only in this sense. 

Because each cycle of the bicyclic RBR graph has its ancestor, the cycle of 
the Ms or Mf graph, the pair of numbered molecular M graphs is in one-to-one 
correspondence with the G1 graph. It is easy to restore the pair of M graphs from 
the given graph G1 (operation reverse to superposition in fig. 1): let us choose any 
of the cycles from the G1 graph; the dashed line(s) of only this cycle should be 
changed back to solid one(s), while the dashed line(s) of another cycle should be 
removed. This operation restores one of the M graphs. Now the same procedure 
should be repeated starting from the second cycle of the G1 graph to restore another 
M graph. The retaining boldface labels should also be removed. In this manner, the 
G1 graph gives rise only to the pair of numbered M graphs, but not to the direction 
of reaction presented by these graphs. 

Let us define two different types of reaction RBR graphs [16]: the first one, 
G1 graph; another type of RBR graph, Go graph. It can be constructed from the G1 
graph by changing all the dashed-marked edges to solid ones, i.e. it is a bicyclic 
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graph with only two sorts of edges (solid and boldface). Corresponding examples 
of  the Go and G1 graphs for some known pyridine SHRTs (2)-(7)  are shown in 
fig. 2. 

These two constructions of Go and G1 graphs permit us to pose and solve the 
following series of problems, which seem interesting both for mathematical and 
heterocyclic chemistry: 

(1) general classification and codification of SHRTs, 

(2) enumeration of the possible types and classes of SHRTs, 

(3) problem of prediction of the unknown SHRTs. 

All these problems are in correlation with each other; some concrete examples 
of how to solve them for particular cases of azole monocyclic HCRs have been 
discussed earlier in a review [16]. Let us briefly illustrate the use of our methodology, 
its generalization, and some important combinatorial results on the examples of 
pyridine SHRTs. 

Types and classes of SHRTs. The construction of the Go graph can be used 
to reveal the degree of topological similarity of different SHRTs. Let us say the 
reactions belong to the same type if their Go graphs coincide, and to the same class 
when their G1 graphs are identical. As one can see, there are three different types 
of pyridine SHRTs, namely, eqs. (2)-(5),  eqs. (1) and (6), and eq. (7). Inside the 
type, reactions can differ by class: HCRs (2) (examined earlier by one of us [19]) 
and (4) are of the same class as the Dimroth rearrangement (3) but differ from the 
class of SHRT (4); classes of SHRTs (1) and (6) are also different. This clear 
structural classification of SHRTs is in contrast with traditional (and some vague) 
utilization of the "named" reactions; for instance, SHRTs (1) and (4), which differ 
either by Go or by G1 graphs, were earlier related to the same reaction type [3]. 

Codes for SHRT types. The simple bicyclic structure of Go graphs permits us 
to define a simple code for any type of SHRT. Let K and L be the size of cycles 
for a pair of M graphs, and N be the size of their common ring fragment (1 < N < K, 
K < L). Then the structure of the Go graph can be considered as a pair of annulated 
K- and L-membered cycles with an N-membered boldface-labelled bridge. The 
vector (K, L, N) is in one-to-one correspondence with the certain Go graph and can 
be used to codify the type of SHRT. The codes KLN for Go graphs of reactions 
(2)-(7)  are shown in fig. 2. 

Enumeration of SHRT classes. Comparing the structures of G1 and Go graphs, 
one can conclude that the G1 graph is the Go graph with labelled edges; one can 
easily obtain the possible G1 graphs from an ancestor Go graph by changing some 
of its edges (designated as solid lines) to dashed ones. Since dashed edges correspond 
to the formed and broken ring bonds, in the particular case of HCRs only two edges 
of different cycles of the Go graph should be labelled. (The boldface-marked edges 
of the bridge should not be labelled, since they correspond to the unchanged ring 
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bonds in SHRT.) All inequivalent manners of this labelling enumerate the number 
of different classes of rearrangements in the given type; an example is shown 
in fig. 3 for the particular Go graph with the code 664. The idea of the described 
enumeration of G1 graphs is realized in our computer program [18] for any Go 
graphs with the number of dashed labels from 2 to 4; simple combinatorial equations 
for enumeration of G1 graphs have also been suggested for rearrangements [16]. 
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Codes for  SHRT classes. A simple convention can be used to codify any Gz 
graph on the basis of the dashed label distribution. Since the Go graph of the code 
K L N  contains two annulated cycles, let us choose any node of degree 3 in the Go 
graph and denote non-boldface edges in both cycles by the letters a, b, c . . . .  (starting 
from the a-edges adjacent to the chosen node). As a consequence, an expression 
K L N  (iKjK. • • ) (iLjL. • • ), showing the position of dashed labels codifies a certain 
G1 graph or a certain class of SHRT (the first is the smallest cycle; for cycles of 
an equal size, the letters should be of lexicographic order). 

Previously, the idea of such codification was applied to HCRs of azoles [16]; 
it is now clear how to obtain the corresponding G1 graphs and codify any HCRs. 
In particular, all the possible codes of pyridine HCRs should have the notation 66N- 
( i ) ( j )  (or simply 66N- i j ) ,  see the examples in fig. 3. Moreover, it is easy to codify 
SHRTs that are not HCRs: the only difference lies in the number of dashed edges 
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used as labels of the Go graph and, evidently, in the corresponding number of the 
letters in the code. In practice, the largest number of formed and broken bonds is not 
more than 4, as it is for SHRTs (5) and (6) in fig. 2 (two pairs of ring bonds to be 
formed and to be broken). The resulting codes should have the notation KLN-(irjx) (iL jL), 
as for instance, 665-(ab)(ab) and 664-(ac)(ac) for reactions (5) and (6). 

Hierarchic classification of SHRTs. The properties of RBR graphs discussed 
above permit us to suggest the first classification of simple heterocyclic ring 
transformation, which is the hierarchic one. In fact, on the first level only the sizes 
of K and L of the starting and final heterocycles are known. The pair (K, L) determines 
all the possible vectors (K, L, N): N = 1, 2 . . . . .  K, K < L. These vectors form the 
second level of classification, level of Go graphs (or of the SHRT types) with the 
codes KLN. Each Go graph, due to its structure and symmetry, determines a new 
level, the level of G1 graphs (or of SHRT classes) with the definite codes, e.g. 
KLN-(i) (j) for HCRs. Each G1 graph determines the corresponding pair of numbered 
M graphs and can be either directly compared with the real SHRT or used for the 
deeper levels of classification (involving, for instance, such labels as heteroatoms, 
substituents, fused rings, etc.). 

The suggested classification of SHRTs is the full one (for not-simple HRT, 
see ref. [16]). This means that an expert chemist can easily use this classification 
tree not only to analyze the similarity of different ring transformations and distributions 
of known SHRT between the different classes but, more importantly, to predict 
unknown and chemically reasonable examples of simple HCRs and HRTs. The 
practical realization of the suggested classification (involving also deeper levels) is 
our computer program "GREH" (Graphs of REcyclizations of Heterocycles, announced 
in ref. [18]), which can be used both as a database of known ring transformation 
and as a tool for prediction of unknown types of HCRs (see examples of  some 
predictions in ref. [16]). 

4. Degenerated ring-transformations of heterocycles 

One specific sort of HRTs are degenerated heterocyclic rearrangements (DHCR). 
Elegant experimental examples of these ring transformations (often proved by the 
labelled atoms method or by temperature controlled NMR studies) are known for 
many monocyclic hetarenes, especially for 5- and 6-membered rings [1-  10]. As in 
the case of any other HRTs, a lot of DHCR are simple. An example of DHCR is 
the reaction (3) if R I=  R 2, see fig. 2. 

More extensive is the bibliography on the quasi-degenerated rearrangements, 
different from the DHCR only by substituent presence and/or by tautomerism (e.g. 
the same reaction (3) if R l differs from R 2 can be considered as quasi-DHCR). An 
attractive peculiarity of quasi-DHCR is an illusive effect of the substituent(s) migration 
or exchange and a unique possibility to control the position of substituents (and/ 
or multiple bonds) only by the temperature or pH variation; on the other hand, the 
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existence of quasi-DHCR is often a reliable signal to search its degenerated prototype. 
Some reviews on HRTs include DHCR and quasi-DHCR [1-3, 8,9]; nevertheless, 
it appears that these reactions have never been analyzed from a combinatorial point 
of view. 

It seems we are the first to pose the question: how many degenerated 
rearrangements (which are SHRTs) are theoretically possible for the given heterocyclic 
nucleus? Although the general graph-theoretical constructions for different types of  
degenerated rearrangements have been discussed in the literature [21,22] with the 
following serious group-theoretical analysis of their reaction graphs [23, 24], we did 
not find an answer to our question. The reason seems clear: before enumeration of 
DHCR for the given heterocycle, one should define the type (class) of this reaction 
(or a corresponding reaction graph). Because the general classification of possible 
types (classes) for SHRTs and HCRs now exists, our approach permits us to solve 
the enumeration problem of the simple DHCR. 

Let us consider any SHRT of  a K-membered heterocycle, which is DHCR; 
following our definitions, one can easily construct the corresponding M and RBR 
graphs. For degenerated SHRTs, the Ms and Mf graphs are obviously isomorphic 
(the only numeration of vertices in these two graphs is different). Let N be the 
number of vertices in the ring fragment common to both isomorphic M graphs 
(1 < N < K, we do not consider rare examples of N = 1); then the corresponding 
bicyclic Go graph with the code KKN can be defined immediately. Let A, B (0 < A < B) 
be the number of vertices in two side chains of the M graph (let us call them A and 
B fragments or chains); then, the K-membered cycle of one M graph should be 
constructed from these A and B chains and from the N-membered ring fragment, 
i.e. A + B + N = K .  

Recall the isomorphism of Ms and Mf graphs; let us carry out the usual 
superposition (as in fig. 1) of these M graphs to obtain the G1 graph; this includes 
the correspondence between the matching N-membered fragments of  M graphs, 
while the chains A and B of one M graph should be placed at the (K-N)-membered 
fragment of the cycle of another M graph. It is possible in a unique manner ifA = B, 
and there are two inequivalent possibilities to superpose if A < B. The resulting 
structures of G1 graphs with the different relative disposition of the A and B fragments 
are symbolically shown as diagrams 4 - 6  in fig. 4, where the dashed edges of  the 

4 5 6 

Fig. 4. 
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G~ graph are located between the terminal vertices of the A and B fragments. Since 
there are no other variants to superpose an isomorphic M graph, diagrams 4 - 6  
exhaust all types of GI graphs possible for DHCR. 

Clearly, diagrams 4 - 6  of fig. 4 present three different types of symmetry of 
G1 graphs. The symmetry of a G1 graph (as of any other graph) can be characterized 
by the group of automorphisms Aut(/-'); this group is isomorphic to a certain permutation 
group determined, for instance, on the vertices of a graph [20]. Since the G1 graph 
contains a set of labelled edges (solid, dashed and boldface), the only condition for 
permutations is to conserve both the incidence and the "color" of an edge between 
a pair of vertices. 

Diagrams 4 - 6  present G1 graphs with three different groups of automorphisms; 
let is call these groups Aut (~)  = (e, a) ,  Aut(Fz) = (e, fl) and Aut(F3) = (e, or, [3, ~), 
where e is identical and a,/3, 7 are non-identical permutations of vertices. One can 
conclude that in the manner of permutation of the G1 graph vertices (e.g. of the 
vertices from the bridge or from A and B fragments of diagrams 4 -  6), these groups 
El, F2 and E3 are isomorphic corresponding to the point groups C2v, C2 and D2h. 
Evidently, the GI graph can be the RBR graph of the degenerated rearrangement 
only if its structure corresponds to any of diagrams 4 - 6  in fig. 4, i.e. if its group 
is of  type Aut(Fi), i = 1, 2, 3. Examples of these groups for the concrete G1 graphs 
are illustrated in fig. 3. (The last G1 graph in this figure with the code 664-(ab) can 
never be the graph of any DHCR due to its group Aut(/-) = (e): there is no ancestor 
pair of isomorphic M graphs with such a G~ graph.) 

Now it is possible to analyze our question of DHCR enumeration for the 
given heterocyclic ring. Let us consider the simplest case of heterocyclic systems 
with only one heteroatom, e.g. such heteroaromatics as 5-membered pyrrole, furan 
and thiophene, or 6-membered such as pyridine, pyrillium or thiapyrillium nucleus. 
Some known examples of DHCR for these hetarenes can be found elsewhere [1-10].  

Any heteroatom can be considered as the label for a vertex of both M graphs, 
and (after superposition) also for vertices of the G1 graph. Due to only three possible 
(for DHCR) groups Aut(~)  of GI graphs, the following requirements should be 
used for labelling the vertices of the GI graph: 

(1) for the vertices vi and v i of the GI graph, which are permuted by permutation 
zr of the groups Aut(Fi), i = 1, 2, 3, labelling of vi requires labelling of v i, and 

(2) vi and v i should belong to the different cycles (in the above-mentioned 
sense) of the G1 graph. (This requirement follows our consideration of a heterocycle 
with only one heteroatom, i.e. one label in the M graph.) 

Let us consider a K-membered heterocycle that undergoes all possible DHCR 
to be enumerated. For the given value N (fixed Go graph), the possible G1 graphs 
of DHCR are differing by their groups Aut(Fi) and the sizes of the A and B 
fragments. For the chosen G~ graph, all the inequivalent possibilities of its labelling 
by one heteroatom (following the above conditions (1) and (2)) correpond to the 
required number of DHCR and can be calculated in the following manner: 
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(a) for group F~ (diagram 4): A + B + N variants. It is possible to label any 
pair of vertices that belongs to A (or B) fragments of the G1 graph and are permuted 
by permutation ct (i.e. A + B variants) and any vertex from the bridge (i.e. N variants); 
the resulting value is equal to the size K of the heterocycle; 

(b) for group F2 (diagram 5): A + B + (N mod 2) variants. It is possible to 
label any pair of vertices from fragments A (or B), which are permuted by permutation 
fl (i.e. A + B variants), and only central vertex of a bridge if its size is odd (i.e. 
(N mod 2) variants). Labelling of any other vertex from the odd bridge (or any 
vertex from the even bridge) violates condition (2); 

(c) for group F3 (diagram 6): 2A + (N + 1)/2 variants. Because A = B, any 
pair of vertices from fragments A (or B) which are permuted by permutations a and 
fl can be labelled (i.e. 2A variants), and only those vertices from a bridge that are 
non-equivalent to the action of permutations fl and ~ and remain immovable to the 
action of permutation ct (i.e. (N + 1)/2 variants). 

Now the proposed formulae should be consequently applied for all other Go 
graphs as ancestors of G~ graphs. Due to the hierarchic classification, the size of 
cycle K determined possible Go graphs with different N> 1, and the symmetry 
requirements select appropriate G1 graphs to be labelled with possible A and B 
fragments. The resulting sum of all labelled G1 graphs should give the number of 
all possible degenerated SHRTs for the given heterocycles with only one heteroatom. 
Let us illustrate the use of our formulae for enumeration of DHCR for ring systems 
of pyrrole, furan and thiophene. 

There are only three possible Go graphs with N > 1 corresponding to SHRTs 
of 5-membered heterocycles into othe 5-membered rings; their codes are 552,553, 
and 554. Among all possible G1 graphs with only a pair of dashed-marked edges 
(which is necessary for any HCRs) there are only nine graphs, whose groups are 
F1, F2 or F3 with the following codes: 

group FI: 552-(a)(a), 552-(b)(b), 553-(a)(a), 554-(a)(a); 

group F2: 552-(a)(d), 552-(b)(c), 553-(a)(c), 554-(a)(b); 

group F3 : 553-(b)(b). 

The size of fragments A, B and N for these Gx graphs and the possible number of 
labellings is shown in table 1. 

In the case of DHCR of 6-membered rings with one heteroatom (e.g. 
pyridine, pyrillium or thiapyrillium), the possible Go graphs have the codes 662, 
663, 664 and 665. There are only fourteen GI graphs with groups F1, F2 or F3 whose 
codes, A, B and N values, and the possible number of rearrangements are also shown 
in table 1. 

These data exhaust all the number of DHCR (evidently, which are SHRTs) 
for 5- and 6-membered heterocycles with only one heteroatom. As an example, all 
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Table 1 

5-membered rings 6-membered rings 

group and code N A B number of code of N A B number of 
of G O graph DHCR G l graph DHCR 

F 1: 552-aa 2 0 3 5 662-aa 2 0 4 6 
552-bb 2 1 2 5 662-bb 2 1 3 6 
553-aa 3 0 2 5 663-aa 3 0 3 6 
554-aa 4 0 1 5 663-bb 3 1 2 6 

664-aa 4 0 2 6 
665-aa 5 0 1 6 

F 2: 552-ad 2 0 3 3 662-ae 2 0 4 4 
552-bc 2 1 2 3 662-bd 2 3 1 4 
553-ac 3 0 2 3 663-ad 3 0 3 4 
554-ab 4 0 1 1 663-bc 3 1 2 4 

664-ac 4 0 2 2 
665-ab 5 0 1 2 

F 3: 553-bb 3 1 1 4 662-cc 2 2 2 5 
664-bb 4 1 1 4 

the labelled G1 graphs with the code 6 6 4 - ( a ) ( a )  and the cor responding  label led 

pairs o f  M graphs are shown in fig. 5 for  the sekeleton of  the pyridine nucleus.  We 

would  like to ment ion  that the only  known  example  o f  degenera ted  S H R T  o f  

pyr idine seems to be the above discussed Dimro th  rearrangement  (3) in fig. 2. The  

results would  also be applied in the search for  new quas i -DHCR.  
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