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RING-TRANSFORMATION GRAPHS IN HETEROCYCLIC CHEMISTRY

Eugeny V. Babaev* and Nikclai S. Zefirov
Department of Chemistry, Moscow State University, Moscow 119899, USSR

A novel graph-theoretical and topelogical approach is suggested for the description and classification
of a grest number of simple ring-transformation reactions of heterocycles. The suggested ring-bond-
redistribution graphs (which can be easily obtained from the known mechanisms of rearrangsments or
recyclizations) visualize the degree of similarity of different ring transformations. A simple typs of structure
of these labelled graphs and the clear chemical sense of the used labels permit us to dlassify a lot of known
simple heterocyclic ring transtormations in an hierarchic system, which ¢an be used to predict unknown iypes,
classes and sorts of these reactions. -

INTRODUCTION

The methods of graph theory during the last ten years have become a useful instrument for analyzing
various problems in theoretical and experimental chemistry (1-9), especially in such fields as isomer
snumeration (2,4), structure and reactivity of conjugated z-systems (1-5), "magic* electron-counting rules in
cluster chemistry (1,8,7) and QSAR-researches (3,8). Traditionally applications of graphs in chemistry are
based on the description of molecular structure by the graph as a set of points and lines in simple accord
with tha intuitive chemical image of a molecule as consequence of atoms and bonds.

One of the important applications of graph theory, suggested mare than 15 yegars ago (10}, is the use
of a graph as an image of a chemical reaction. In a series of papers, Zefirov and Tratch (11-15) (and later
Fuijita (18)) used graphs for the description of bond redistributions in the course of an organic reaction. If
the Initlal and final molecules in a reaction are described as {abellsd multigraphs, then any reaction is
characterized by an edge redistribution in the initial multigraph.  The redistribution is represented by a
symbolic equation in which cnly the bonds changing their order are presented. The relative disposition of
these bonds is uniguely characterized by the topology identifying graph, the vertices and edges of this graph
also correspond to reaction centres and to bonds changing their order in the course of the reaction,
respectively. For example, one can transform the chemical equation of the Diels-Alder reaction (1) into the
symbolic equation {2) and then to the corresponding topology identifier {Chart 1).  This approach (the
so-called “formal-logical approach” {10,13,14) or FLA) has been developad up to a rigorous mathemalical
level (15). The computer programs based on FLA have een elabarated (15,17); they permit 10 genergte all
possible symbolic equations {corresponding to a given topology identifier) and, hence, they are the powerful
tools of search for new types of organic reactions {12}.
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Due o our interest bath in graph theory (18) and in the chemistry of heterocycles (19,20) we present
in this paper our graph-theory approach to one particular branch of organic reacticns - ring transformations
andfor rearrangesments of haterocycles.

Since the classical work of Dimroth (21), this type of reactions received great attention from organic
chemists and this area has been extensively studied and reviewed (see, for example, {22-28)). These
reactions frequently lead to unexpectsd products, they often involve unusual mechanisms and sometimes
they prove to be the only routes to the target heterocyclic structures. In recent times the examples of such
rearrangements, including ring transformations and/or recyclizations, have been found for almost every
heterocyctic system of any ring size and any type, nummber or distribution of heteroatoms (28}, Indeed, the
reactions prasented on Charts 2-6 can be taken as good examples of such rearrangements. Many of them
have special names and one can gasily recall the well-known examples of the Dimroth rearrangerment of
azoles (21-23) {eq. (s}, azines (22,24) (eq. (29)) and fused azoloazines (29,24,20), Comforth (22,23) feq.
{8}), Alberth (23,25) or Boulton-Katritzky (28,29) (eq. {3), (4)) rearrangements of five-membered heterocycles
and the Kest-Sagitullin transformations of a pyridine nucleus to benzene (20,24) (eq. (15)). Other examples
of "named" ring transformations are the well-known Hafnier (24,26) and Zinke-Konig (24) reactions, as well
as the processes of pyrrole, furan and thiophen interconversions (eq. (20)), generally accepted in the Russian
literature as Yur'ev reactions (19).

However, in spite of the great experimental development of this area of heterocyclic chemistry, ring
transtormation reactions are still poorly classified. Because of the great variety of recyclization types, it is
sometimes difficult to justify the real novelty of a claimed "new ring transformation” published in the literature.
There are only a few works concerned with the general classification of ring transformations.

In his first classical review on ring transformations Van der Plas (22) classified the reactions by the size
of starting and final heterocyclic rings. L'abbé (23) suggested a classification of monocyclic rearrangements
for 5-membered heterocycles taking into account the number of side-chain atoms in the different recyclization
processes. For instance, in the case of the Dimroth reaction (8}, the size of the side chain corresponding to
an amino group, Is equal 1o one; for the Comiorth rearrangement (6), the side chain is a carbony! group with
size 2 and for the Boulton-Katritzky rearrangement (3) the size corresponding to an oxime group is equal to
3. Schwaika (25) examined a large number of azole ANRCRC-reactions with hydrazine, and classified the
resulting ring transformations by the size of the unchanged ring fragments in the starting heterocycle. The
classification of pyrilium transformations (26) has been based on the distribution of the fragments of the
starting pyrillium ring between the final cyclic structure and its side chains. As it was shown by Bataban in
the only announced approach {26¢), further rationalization of this classification could be performed on the
basis of simple graph-theoretical considerations; the cited work remains the only application of the graph
thecry in the field of heterocyclic ring transformations.

Thus, there is no universal approach capable of generalizing the recyclization processes into a
hierarchical system and, what is more important, to predict new unknown examples of ring transformations
on the hasis of such a classification. The goal of this paper is to suggest an approach for the solution of
these problems. The main idea of cur approach consists of constructing a special graph of ring-bonds
redistribution far any ring transformation process according to the following analysis of the structure of these
graphs.

Basic notlons of the ring-bond-redistribution graph approach

Each reaction is characterized by the corresponding redistribution of bonds. Let us take, for instance,
a rearrangement (3} of 1,2,4-oxadiazole oxime 1 1o acylaminofurazane 2 {(Chart 2; this is an example of the
weli-known Boulton-Katritzky rearrangement (23,28). First, we can describs the bond redistribution for
reaction (3) by means of the FLA-formalism (Chart 2). The interconversion of the labelled multigraphs relating
to the starting and final molecutes (eq). (3a) on Chart 2) as well as the symbolic equation {3b) permits us to
classify reaction (3) as an {(1,1} + (3, 1))-cyclodismutation (12,13). Being correct in principle, this simple
classification, however, brings no information about the starting and final heterocyclic rings, because the
corresponding chains between the atoms 1-4, 1-8 and 4-8, which determine the cyclic structure {see eguation
{3c}), are omitted inthe FLA-formalism. A mora detailed treatment needs the additional notion of the structural
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souation (see eq. 3d) (15), which reflects the cyclic structures of reactants and products (the additicnal
structural centres are denoted by circles in eq. 3¢). The computer procedures for the constructive generation
of structural equations have not been elaborated o date, but a rigourous mathematical model of their
generation has been established {15).

The other specific feature leads to more serious difficulties in the applications of FLA to the problem
considered. His clear that the hydrogen atom {or another easily migrating function) is not really fixed al a
single atom (.g. at N in structure 2 of Chart 2), but can migrate {to 03 and N4, see Chart 2) due to tautomeric
interconversions. For this reason, the equations similar to (3b) or (3d) contain nen-necessary information
about the location of some atoms. Thus, there is a need for some alternative objects of a graph-theoretic
nature applicable to the specific field of heterocyclic chemistry.

We shall use the term heterocyclic ring transformaiion {HRT) tor any reaction containing the steps ofring
opening and ring closure in any sequence. Wa call the heterocyclic ring transformation to be simple (SHRT)



1) if only one ring of the starting heterocycle is transformed into only one ring of the final molecule, 2) if there
is no transient formation of cycles except the formation of the final cycle and 3) If there is no transient
permutation of the atoms belonging either to the starting or the final heterocyclic rings. For instance, the
rearrangements of Charts 2,3,5 are simple, however the HRT (12), (13) of Chart 4 are not because the above
conditions 1}, 2) or 3) are violated.

Now we can determine a new type of graphs responsible for HRT-reactions and concentrate all our
attention exclusively on the ring atomns and bonds belonging either to the starting or the final cycle, Letus
use the following algorithm to construct this new type of graph of ring bonds redisiribution (RBR-graph) :

1. The molecular structures are replaced by unmarked monocyclic molecudar graphs. The vertices and the
edges of the graphs are only the atoms and the bonds, entering either in the final or in the starting ring. (If condensed
rings are present in the starting system, then only the ring with minimal size is considered for transformation. )

2. The symbols of heteroatoms, as well as hydrogen atoms, multiple bonds, substituents {(including condensed
rings) must be omiited in the graph structure,

3, The atoms (and corresponding graph vertices) of the final structure are numbered in accordance with the
numbers of the starting structure and the mechanism of HRT.

4. The graphs of the final and staring soructures are "superposed” according to the matching vertices with
identical numbers, The resulting ring transformation graph contains edges of different tvpes, designated by solid lines
(if the edge is present in both molecular graphs), dashed lines {if the edge is present only in one molecular graph)
and bold lines (if the edge belfongs to both cycles).

The carresponding molecular graphs 1a, 2a, their superposition and the resulting RER-graph 3 are
shown in Chart 2. We have to emphasize, that the resulting graphs 1a, 2a differ in principle from the graphs
used in FLA (of. egs 3a-d) both in the vertices and the edges. Due to the algorithm requirements, graphs 1a
and 2a contain vertices corresponding to both heterocyclic ring systems as well as to the oxime or agylamino
groups, present as fragments in the final or starting rings. There are no vertices corresponding to hydrogen
atoms (as well as atoms of substituents R in t and 2) since they do not enter into the ring structure. We aiso
ignore the multiplicity of the bonds; for example, bonds 1-2 and 2-3, which changs their orders. The resulting
graph 3 consists only of edges, responsible for the ring bonds, and they are marked either as solid lines
(corresponding to the unchanged bonds 3-2-1-5-8-7-8 of final and starting heterocyclic rings), or as dashed
lines {corresponding to the broken and formed bonds 3-4 and 4-8) or as bold line (corresponding to the
bend 4-5 mutual to both cycles). Obvicusly, the RBR-graphs of the direct and reverse reaction are identical,
This typa of graphs we call a G -graph.

Heterocyclic rearrangements. Following the above mentioned algorithm, one can draw the G, -graphs for
the transformations (4-9) of five-membered heterocycles (31a-d), Chart 3 (RBR-graphs 3,4a-sa of Charts 2,3).
Comparing the structures of G,-graph, it is easy 10 establish the similarity of different ring transformation
reactions : the HRT's belong to the same class if their G 1-graphs are identical. As one can see from Chart
3, a very similar reactions (7) and (8) correspending to thiadiazole-triazole rearrangement (31a,d) are
nevertheless different and belong to separate classes, due to the differences in their G -graphs 7a, ga.
Reaction (7) is of the same class as the Cornforth rearrangement (31d) (6} dus to the identity of the graphs
8a, 7a. In reaction (4} the starting molecule contains an isoxazole condensed to benzene ring. It is obvious
that the benzene nucleus can be considered as a substituent and onty the isoxazole ring (but not the
8-membered cycie of the bicyclic structure} undergoes transformation. The resulting G ,-graph 4a is identical
with graph 2 of the Boulton-Katritzky rearrangement (28,31d). '

A more detailed comparison of the G, -graphs of Chart 3 gives another way to classify the HRT. If the
dashed lines are substituted by solid ones in the G -graphs 4a-ga, one obtains the bicyclic graphs 4b-sb which
are called as G,-graphs (Chart 3). The structure of any G4-graph contains a pair of annelated 5-membered
cycles {responsible for the size of the starting and final cycles), and the graphs 4b-9b differ from each other
only by the size of a bridge betwsen the annelated cycles (the edges of this type are shown as bolg lines in
Go-graphs aswell asin G 1-graphs, see Chart 3). Simple presentations using Go-graphs can now be used
to demonstrate the global similarity of different heterocyclic rearrangements : the reactions are of the same
type if their @,-graphs are identical. For example, the transformations (3)-(9) are divided into three types {(3-5),
{67}, (3-9)), due to the difference in bridge size of the G -graphs. Inside the reaction type one can sub-classify
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certain reaction classes, responsible for the same G, -graph. For example reactions (8), (9} are of the same
type but befong to difierent classes.

in G,-graphs ah-ob the size of the bridge, common to both eycles, varies from two to four vertices. One
can draw ancther kind of Go-graph {ses the graphs 1ob,11b on Chart 3) as a pair of S-membered rings,
containing one or no common vertices. However, the chemical prototypes responsible for the G°~graphs
10, 11 - comparatively rare reactions (10} and {11) - have also been found in the literature (31b.c).

Since the given examples of RBR-graphs for the reactions (3)-(11) prove to be of the bicyclic structure,
it becomes important to question whether any ring transformation reaction can be represented exclusively
by bicyclic G- and G-graphs? Itis easy to prove that tha bicyclic character of the graphs will take place
oniy if the HRT is an SHRT (32). Fortunately, most of the known ring transformations of heterocycles prove
to be SHRT (see the above-mentioned examples), and, hence, the bicyclic structure of G -graphs should be
regarded empirically as a general case in heterocyclic chemistry. Some rare counter-examples of non-simple

-71-



reactions are shown on Chart 4. These HRT’s are concerned with photachemical rearrangements oocuring
via intermediate cycle formation (equation (12)) or permutation of ring atoms as in reaction (13
{"no-side-chain® rearrangements (23)).
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Ring contractionvextention examples. One can use ring transformation graphs G, and G, to classify not
only the above mentioned azoles transformations (Charts 2-3) but the rearrangements of heterocydlic
systems of any ring size. Examples {(18}-(19) shown of Chart 5 include reactions of extention, contraction angd
retention of ring size from 3- 1o 7-membered heterocycles (34). All the graphs of Chart 5, as in the previous
examples, consist of a pair of annelated cycles and a bridge, whose size is, by definition, determined by the
fragment, common to both heterocyclic rings. A new peculiarity is shown up in the Gy-graphs 18 and 19
where the bridges coincide with the smaller cycle of the annsiated rings.
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Fragment including/eliminating reactions. The developed approach is wide encugh to include not only
rearrangements but also recyclizations in which reegents are included in the final ring and/or in which some
fragrnents are eliminated from starting ring. There are many well-known examples of this kind; for instance,
the reactions of heteroatom exchangs, especially in pyrillium and furan chemistry (19,26,29) see, for example
aqns (20), {21) of Chart 5. We have to mention that the terms HRT and SHRT are also applicable to this kind
of reactions (reactions {20y, (21) illustrate the SHRT, but reaction (14) (35) in Chart 4 is not the simple one}.
This new kind of HRT should be distinguished from the previously examined rearrangements. i AB ... are
the labels of heterocyclic ring systems and X, X, ... are the labels for any linsar external fragments
incorporated into the structure of a final or starting ring, we can roughly classify the kind of HAT by the number
of independent fragments (A,B,X). For example all the rearrangements (3)-(11), (18)-(19} are oithe A= B -
kind. However, the reaction (24) (25) can be represented by the equation A+ X~B and the reactions (20),
{21) and (26) - by equation A+X,+B+X,. We also mention that equation A—B + X describes the reaction
(22) (31d), which represents a ring transformation with elimination of a starting ring fragment. Obvicusly, the
number of symbols A,B,X in the classification equation is not the reaction order but only the number of
fragments related to the starting or final ring.

The algarithm for G -graph canstruction can be easily adapted to reactions of every kind (see the
corresponding RBR-graphs in Chart 8). However, in cases of SHRT which are not rearrangements the
resulting molecular graphs prove not to be connected graphs, because one mustinclude in molecular graphs

Gy Gg
.
3 . E] 4 3
{20 - L] ’
3U5 ML 20 2 st H0 tﬂs’s 4&
‘[..ni MLETT, [

CHART 6.

-73-



the linear fragments of reagents (or eliminated groups). In fact, the only difference between the &,-graphs
of HRT in Chart 8 and the graphs of rearrangements in Charts 2,3 and 5 is the number of dashed lines
correspending te the formed or broken bonds in heterocyelic rings. All G,-graphs oblained from G, -graphs
possess the usual bicyclic structure in accordance with the size of the starting and finai rings {see Chart 8).
Itis of interest that the unusual reaction (23} (36} should be classified as A=-B +X and its G,-graph is alse
hicyclic. We also have to mention that reactions like (285), usually regarded (29} as examples of cycloaddition
- elimination processes, may now be considered as simple ring transformations corresponding to G -graph.

Evidently, all the examples on Chart 6 are SHRT. An example of a non-simple HRT of the kind
AtX~ B+ )(2 is a rather complex reaction (14}, see Chart 4, where the starting pyridine ring appears in both
the cycles of the final indole nucleus (35).

Divection of bond heterolysis. Following the algorithm of RBR-graphs construction, it is easy to determine
the degree of similarity of any SHRT, Nevertheless, there is still another chemical reason for a further
clagsification of similar SHRTs. Let us compare the reactions (26} and (27) (37a,b), Chart 7. Both reactions
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are represented by the identical G,-graph 26a or G -graph 27a. The real difference betwesn these SHRTS,
however, consists in the number of electrophilic and nucleophilic centres, participating in the reaction
mechanism. Indeed, for the Dimroth rearrangement (26}, electrophilic carbon C-2 |eaves the nucleophilic
suiphur atom and forms a bond with the nucleophilic nitrogen of the exc-amine group {37a). On the contrary,
in reaction {27) the nucleophilic sulphur atom goes away from the electrophilic C-1 atom to the electrophilic
C-8 atom of the carbonyl group (37b). Thus, we have to take into consideration the number and the
distribution of potentially nucleophilic or electrophilic centres both in the ring and in the side chain. Let us
designate the nucleophilic ("donor) atoms by a black heavy dots and the electrophilic (*acceptor®) atoms
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by a hollow circles at the end of the corresponding vertices in @ ,-graph 28a. The resulting new graphs, zeb
and 27b comtain useful additional information on the direction of bond heterolysis in reactions (26) and (27).
We call this kind of graph a G-graphs and determine one more step in our dlassification : the SHRTs are of
the same sort if their ngraphs coincide. For instance, the reactions (26) and (27) are of the same npe, knd
and class, but of different sorts. In fact, the rearrangement {28} is of the same sort as the Dimroth
rearrangement (s). Another sultable llustration of the application of G,-graphs is the Interesting consequence
of SHRT (28) and (29) (38), see Chart 7. From the structure of the corresponding G,-graphs 28a and 29a, one
can more easily grasp the resulting mechanism of this double HRT, as well as the difference in direction of
bond heterolysis in both pyridinium rings.

It is obvious that the construstion of G,-graphs (which are, in fact, labelled graphs) is applicable only
to the reactions with heterolytic mechanism of bond redistribution. Indeed, the whole family of the
ANRORG-reactions can be treated in the framework of our approach using G,-graphs. However, if HRT
describes the process with a homolytic or synchronous mechanism, only G, or G,-graphs can be used. It
should be also mentioned that any RBR-graph of a direct reaction is identical to the corresponding RBR-graph
of th& reverse reaction because the algorithm for RER-graph construction includes both the starting and final
molecules. )

As we have discussed, one can construct G-, G- and G,-graphs for any HRT, including not only the
simple reactions. Inthe cases of reactions which are rof SHRT typs, it can lsad to a more complex RBR-graph
type. Forinstance, the corresponding graphs of the reactions in Chart 4 would have more than two cycles
in their G-graphs and will evoke more difficulties in classification. In this paper we shall limit cur analysis
exclusively 10 SHRTSs, because they are, in fact, the most widely spread HRT.

The suggested nofion of RBR-graphs G, G, and &, is novel and censtitute a simple image of HRT.
Moregover, it can be developed into an exact mathematical instrument in the field of heterocyclic chemistry,
which, at prasent is a descriptive rather than an exact science.

SYMMETRY PROPERTIES OF RBR-GRAPHS AND THE HIERARCHIC CLASSIFICATION OF
SHRT

Now it is necessary to examine more carefully the structure of the suggested graphs Gy Gy and G, and
relationships between them.

Gy-graphs. As has been pointed out, G,-graphs are bicyclic graphs (32) with a labelied chain; for the
purpose of classification one can omit this label to get parent uniabelled graphs (abstract graphs). It shoutd
be mentioned that the resulting bicyclic abstract graphs are simply the graphs with cyclomatic number 2 (33)
and there are different possibilities for the topology of cycle annelation, symbolically flustrated by pictures
30 (G-topology), 31 {spiro-topology) and a2 (Chart 8).
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The example of the cotrespondence between G,-graph 33a and its parent abstract graph 33 is given in
Chart 8. The reversible procedure of labelling a chain in 23 gives three different Gy-graphs 33a-c. These
RBR-graphs, from the chemical point of view are correspond to quite different types of ring transformations.
This is obvious from a comparison of the sizes of annelated rings in 33a-¢, i.e. the sizes of the starting and
final heterocyclic systems.

The last censideration glves another reason for classifying the structure of G -graphs by the size of the
pair of cycles (starting and final heterocycles) which could be annelated only by a certain and finite numbers
of combinations; in this case the only variable value will be the size of the labelled bridge, common to hoth
cycles. Chart @ illustrates ali the nonequivalent possibilities for the annefation of cycles with a sizes from 5
to 7; in each row the only variable is the size of the mutual bridge.
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In general, we can codify any G -graph by the size of the annelated cyclss and the size of the bridge
as follows : if M and N are the sizes of the srallest and the largest cycles, and K the number of vertices in
the labelled bridge, then the vector (M, N, K) codifies the only one Gy-graph. Inthe generalcase O < K <
N; the corresponding examples for K =0 (unconnected cyclesin 11b, FIG. 3), K= 1 {spiro-gycles in 1ob, Chart
3)or K=N (Gy-graphs 18 and 19, Chart 5) have been shown above. Now one can see the chemical difference
between G,-graphs 33a- on Chart 8, which are correspond to the abstract graph 23 they differ in their codes
{563), (574) and {875), i.e. they are responsthle for HRT with different sizes of starting and final rings, namely
58, 5-7 and 6-7.

The suggested code {rather analogous to IUPAG-rules for bicycloalkanes) permits us easily to tabulate
alt the possible combinations of ring transformation of M-membered heterocycies 10 N-membered ones. All
the types of SHRT with their codes from 5- to 7-membered rings are shown in Chart 9; particularly, this is
the complete classification of SHRT-types for usual heteroaromatics.
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G,-graphs. As we defined above, G-graphs were constructed from G, -graphs by changing the dashed
edges into solid ones (see Chart 3); in this way SHRT's have been classified into types. If we try to reverse
the procedure, i.e. 10 sub-classify or pick out ihe different classes in the given type of SHRT, we have to Jabel
some edges in a given G ;-graph vice versa to dashed ones. As one can see, the number of dashed labels
is determined by the reaction kind, namely by the number of components A, B, X in the SHRT (see Chart 6).
Let us limit the SHRT by the simplest (A~ B) kind, i.e. for rearrangements. In this case the only two dashed
labels {responsible for the broken or formed bonds) are needed. These labels can be distributed between
the annelated cycles of Go-graphs in different ways, due to the structure and symmetry of the given Go-graph.
Some examples are given in Chart 10. (It is obvious, that the bold-marked edges of the bridge in G -graph
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should not be labelled, since they are responsible for the unchanged bonds in both heterocyclic rings).
Simple combinatorial considerations permit to enumerate the number of possible non-equivalent G y-araphs,
corresponding to the graph Gy i.e. all theorgtically possible classes of rearrangemsnts in given reaction type.
For instance, all the classes of the type (552} are presented in Chart 10. Let m and n are the number of solid
edges in each cycle of Gy-graph; for G,-graph with the code (MNK) m = MK+1 and n = N-K+1. The
combinatorial equations for the full number of non-equivalent classes of rearrangements (G,-graphs),
responsible for the given type (Gy-graph) are shown in Table 1. As one can see from the table, only the

TABLE 1.

Go-graph @-Topclogy Spiro-topology

topology {as In 309 {as In 31)
Equality of
annslated Equal Non-equal Equal Noh-equal
cycles size
Odness*) of Even Odg Even Even Odd Even Cdd Even Even Odd
the cycles Even Odd Even Odd Odd Even Qdd Even Odd Odd
Number of e +2m (m+1)2 mn omn mndn mm+2) m+m+3) ma omnen (me i)
G, graphs a a 2 2 2 8 8 a4 4

{m=nj n-Even

m-Cdd

*) The oddness of the number of solid (not bold) lines in every annslated cycle of G-graph.

topology and evenness or oddness of m and n values in the Go-graph are necessary to enumerate the
corresponding @ -graphs. There is no serious problem to extend the combinatorial examination from
rearrangements to SHAT of any kind; the only difference will lie in the number of dashed kabels, responsible
for the formed or broken bonds.
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A simple convention can be used to codify any class of rearrangements on the basis of the distribution
of dashed labels in the bicyclic structure. Since @,-graph contains two annelated cycles, let us dencte the
unlabelied edges in the lesser cycle by the lstters a, b, ..., beginning from the edge which is the nearest to
the bridge (see Chart 10}; we also denote by the same letters the edges of the annelated cycle, beginning
fromthe edge which is adjacent to the a-edge of the lesser cycle. As aconsequencs, the expressicn (MNK-),
asfor instance (552-ab), will codify a certain G, -graph or a certain class of SHRT (the first letter i is responsible
for the lesser cycle; for equal ring size the letters 4, § should be lexically regulated). For instance, we can
construct and codify certain G,-graphs from each G,-graph, which contains annelated 5-membered cycles
{i.e. of (55K)-type); in Chart 11 the correspondence between the resulting G,-graphs and their codes is
shown. As one can see, the given graphs on Chart 11 exhaust ali possible classes of rearrangements of
5-membered heterocyclic rings. Moreover, in Table 2 the codes of all theoretically possible classes of
reciprocal rearrangements between heterocycles with ring sizes from 5 to 7 are tabulated.
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CHART 11.

G,-graphs. As we have shown above, the SHRTs of a given class {reactions with identical G, -graphs)
can differ from each other by the sort of ring transformation due to the distribution of electrophilic and
nucleophilic centres in the starting melecule, i.e. by their 6,-graph structure. Now the problem of anumeration
and construction of all possible G,-graphs (reaction sorts) for given 6,-graph (reaction class) arises. This
problem is equivalent to the enumeraticn of labelled G -graphs of a given structure, where the label is (see
Chart 7} a hallow circle or a heavy point for the vertices adjacent to the dashed lahels. (Since the colours
show the direction of bond heterclysis, the only requireinent is that the ends of any dashed edge should
have different colours}. For the examples examined in Chart 7, there are only two variants of G,-graphs
responsible for G, -graphs both of the codes (554-aa) and (665-aa). Itis obvious thatin any case a G,-graph
of (MNK-ga)-structure should carrespend only to a pair of G,-graphs. In the general case, the number of
G,-graphs depends on the symmetry of the initial G, -graph. As one can see from Chart 12, the possible
number of G,-graphs for heterocyclic rearrangements would vary from ane ta four. Simple group-theoretical
considerations (see Appendix and Chart 13} can be used to predict the number of possible Gz-graphs
corresponding to the G -graph of a given symmetry, Chart 13. The suggested rute permits us to enumerate
the number of the sorts of heterocyclic rearrangaments just by a first glance on the reaction class. #tis useful
for any SHRT with any structure and symmetry of a G,-graph with the topology of 8-type (one can for instance
examine the groups of the graphs on Chart 12); the only exceptions are the abovs mentioned G,-graphs of
the ga-classes.

From the chemical point of view, an important problem is how to get a common chemical equation from
the structures of RBR-graphs. As we have mentioned above, any RBR-graphs of the direct reaction is
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TABLE 2.

Possible
codes for Possibla codes for the corresponding & ,-graphs
Go-graphs
561 aa ab ac bb bc cc
562 ag ab ac ad ae bb bc bd be
563 aa ab ac ad ba bb
564 az ab ac
585 aa
571 az ab ac ad bb be bd cc cd
572 ac ab ac ad ac o ba bb be bd be bf
573 ag ab ac ad ae ba bb bc bd be
574 ag ab ac ad
575 az ab
661 aa ab ac bb bc cc
862 ax ab ac ad ae bb bc bd cc
663 aq ab ac ad bb be
664 an ab ac bb
665 aa ab
671 az ab ac ad ba bc bd cc od
672 ar ab ac ad az of ba bb bc bd be B ca b cc od
673 aa ab ac ad ae ba bF bc bd be
674 ag ab ac ad ba bb
675 aa ab ac
678 aa
771 aa ab ac ad bb bc bd cc cd dd
772 aa ab ac ad ae af bb bc bd be cc cd
773 ax ab ac ad ae bb bc bd cc
774 aa ab ac ad bb be
775 aga ab ac bBb
776 aa ab
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identical with the corresponding graph of the reverse reaction; that's why the given reaction graph (6, or 6,))
will determine only the pair of molecular graphs (corresponding to the structure of both the starting and the
final molecules), hut not the direction of the reaction. I is easy to reconstruct the coresponding pair of
molecular graphs (see for instance ta, 2a in Chart 2) starting from the G,-graph (8.g. 3} : one must remcve
one or other dashed edge in the G,-graph. In the general case, when the G-greph contains maore than two
dashed edges, the first molecular graph sheuld be constructed by removal of the dashed edges from the
first cycle of the G,-graph and the second molecular graph - corraspondingly by the same procedure in the
second annelated cycle.

Example of Elements of Class of Fhe Numnber of
6,-graph permutation group permutation G,-graphs
{a,b,c)
1.8 {I)E)HENE)T)E) a 4
2 | S forE)
3 04 %
e a 3
R ¢
(17)(26){35) ({8} c
34 35
:1 DT E, a 2
ZQZL (14)(23)(58)(67) b
z‘ ] E, a 3
oo (15)(26}(37)(48) ¢
t 9 . E a
FU ), (19)(28)37)46)(5)(10), c 2
5 {16){27)(38)(49)(5 10), c
(14)(23)5 10)(69}(78) b
CHART 13.

Hierarchic classification, Any rearrangement {as well as SHRT) with given mechanism belongs to a certain
type, class and sort of ring transformation reaction, and is described by a certain G-, G,- and G,-graphs.
The resulting classification proves to be the hierarchic one : the types, the classes and the sorts should
represent different levels of the classification tree; and besides, each lowsr levs! determines the structure of
a higher level. Really, on the first level, only the ring size M and N of the starting and final heterccycles is
defined; every pair (M, N) determines at the second ievel the inequivalent (MNK)-vectors which can be
represented by the possible ways of annelation of M- and N-membered cycles or labelled @-graphs. Every
reaction type can be divided into different reaction kinds and classes, which form the third Ievel of the
classification tree. We want to mention, that the kind of a reaction is defined only by the number of dashed
edges in the G-graph, while the class - by the dashed edges distribution; the possible number of kinds is .
determined by the full number of unlabelled edges in the starting @ -graph, the number of classes (or
G,-graphs) - both by the reaction kind and by the structure and symmetry of the 8 -graph. At last, the
symmetry and the distribution of the dashed edges in every G,-graph of the third level determines the possible
structures of G,-graphs (or reaction sorts) on the last (fourth) level, From a given 6,-graph one can get the
corresponding pair of molecular graphs which would contain the labels responsible for potentially
electrophilic and nucleophitic centres. The resulting molecular graphs are the images of concrete starting
and final heterocycles.



In principle, one can continue the classification to deeper levels by including as new parameters the
number and the distribution of heteroatoms, multiple bonds and condensed rings. H is obvious, however,
that thig kind of problem would be examined better by the use of computers. Some simple combinatorial
rules for these new levels as well as the computer program, including different lavels of classification, are
NOW in progress.

The suggested classification permits us to define the structural similarity of different ring transformations
in accordance with their disposition in the classification tree. In this way one can satisfactorily classify the
already existing SHRT. On the other hand, the hierarchic structure of the classification and the usefulness
of combinatorial methods tum us to the reversible problem of prediction of new probable sorts, classes and
types of SHRT. Afthough in general this problem seems to be rather complex, it is possible fo give several
remarks on the existing rearrangements of 5-membered hetercaromatics with the purpose of predicting new
ring transformations. In the present paper we have to be limited only by the qualitative examingtion of the
problem and the details wili be given in further communications.

We were limited only by the SHRT-rearrangements of 5-membered aromatic heterocycles (including
the condensed aromatic rings) only of the A=B - kind which have been mentioned in the reviews [22, 23,
25, 27, 28]. Ws have examined 170 examples of different rearrangements {consider rearrangements to be
identical when the difference was only in the naturs of substituents). It has bsen found that these
rearrangements are distributed among the types, classes and sorts of SHRT in a rather iregular way, see
Chart 14. Between the five possible reaction types (see Gy-graphs on Charts 3,9) the mast important (97%
of all rearrangements) are G,,-graphs with the codes (552), (553) and (554) i.e. of 8-topology. Most interesting
is the distribution Into classes of every type : the ga-class turmns te be the most widely spread class {more
than 90% in every type) among the azales rearrangements. In particular, the well known examples of Dimroth,
Cornforth and Boulton-Katritzky rearrangements belong to the az-classes.

As we have already mentioned {see Chart 7) there are only two possible sorts of G,-graphs
correspending to G, -graphs of aa-classes ; the possible structures should cantain either two nucleophilic
(M) and one electrophific (E) centre {NNE-sort) or vice versa (EEN-sort). The rearrangements of the first
NNE-sort turn out 10 be more wide-spread in azole chemistry and thay wers also better examined. (The
named rearrangements of Dimroth (554-aa-NNE), Cornforth (553-aa-NNE) and Boulton-Katritzky
(552-aa-NNE) are just of this sart). The contrary EEN-sort, nevertheless, has also been found and its part
varies from 20% in the (554-aa}-class to 10% in the (552-aa)-class. Due to the opposition in the distribution
of donorfacceptor centres this reaction sorts could be conventicnally named as "Anti"-Dimroth sort and
“Anti"-Boulton-Katritzky sort {see Chart 14} respectively. To our knowiadge, the corresponding example of
the rather interesting “Anti*-Cornforth rearrangement of the sort (553-aa-EEN) is unknown yet (see G,-graph
34 on Chart 14). Probably, this sort of SHRT is waiting to be really the new one in SHRT.
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CHART 14.

APPENDIX

Let us limit ourselves by the graphs with O-topology {fike 30 on FIG. 8), which is more widespread in SHRT
than the other topologies like 31 or 32. The symmetry of a G -graph (as of anyother graph), can be characterized
by the group of automorphisms of the graph, which is isomorphic to a certain permitation group, determined, for
instance, on the graph vertices [33). Examples of ordinary permustation groups of the vertices of some G‘-graphs
and the possible number of corresponding G.,-graphs are shown in Chart 13. As one can see, the permutations can
be divided into three classes : a) the identical one, b) those which permute the vertices only in the same annelated
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cycle in the G-graph and c) those which permute the vertices of different annelated cycles in the G j-graph. A simple
rule can be used to correlate the number of Gy-graphs (L) with the presence of certain permutations in the
permutation group of a given G, -graph ;

1. If all the persmutations are of a)-class, then L=4,
2, If there exists in the group any permutation of ¢)-closs, then L=2.
3. In all other cases, L.=3.
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