УДК 543.51:547.759

особенности масс-спектральной фрагментации метилнитроиндолизинов

С. И. Бобровский, Е. В. Бабаев, Ю. Г. Бундель

(кафедра органической химии)

Метод масс-спектрометрии оказался весьма информативным для изучения строения нитрогетаренов [1]. В настоящем сообщении представлены результаты изучения первичных процессов масс-спектральной фрагментации ряда изомерных метилинтроиндолизинов, содержащих орто-расположение СН₃- и NO₂-группы в различных положениях индолизинового кольца. Основными направлениями фрагментации являются
следующие процессы с участием NO₂-группы (характерные для интроаренов и нитрогетаренов в целом): I — элиминирование NO₂-группы; 2 — отщепление NO в результате нитро-интритной перегруппировки; 3 — элиминирование НО-радикала в результате «орто-эффекта» [2]. Полученные экспериментальные данные приведены в

Заместители	М	$\frac{M_{+}}{[M-NO]_{+}}$		
		M	M+	M ⁺
2-Me-6-NO ₂ [3]	176		0,75	
2-Me-8-NO ₂ [4]	176	0,01	0,88	i _
$2,7-Me_2-6-NO_2$	190	0,06	1,12	0,60
2.7-Me ₂ -8-NO ₂	190	0.12	1.35	0.16
2-Me-1-NO ₂	176	0,29	0,04	0,69
2-Me-3-NO ₂	176	0,40	0,20	0,17
2-Me-1 , $6\text{-(NO}_2)_2$	221	0,11	0,08	0,31
$2\text{-Me-3}, 6\text{-(NO}_2)_2$	221	0.23	0,12	0.17

таблице вместе с ранее полученными результатами масс-спектрометрии 2-метил-6-нитро- и 2-метил-8-нитроиндолизинов. Из данных таблицы видно, что в случае 6- и 8-витроиндолизинов важную роль играет элиминирование интрогруппы, тогда как для индолизинов с NO₂-группой в пиррольном цикле более характерна интро-нитритная перегруппировка. Аналогичная зависимость ранее была обнаружена для изомерных интроиндолов [3].

Наиболее важным результатом представляется обнаружения зависимость интенсивности пика [М—ОН]⁺ от расположения СН₃ и NO₂-групп по отношению к тетраеновому остову индолизина, характеризующемуся значительной степенью локализации двойных и простых связей [5]. Оказалось, что соотношение [М—ОН]+/М+ в

несколько раз выше для изомеров, содержащих фрагмент

СН₃ NO₃ , чем для изо-

меров, содержащих фрагмент

в случае нахождения заместителей как в

пиррольной, так и в пиридиновой части молекулы индолизина (см. таблицу). Найденная зависимость может быть полезна при определении строения изомерных метилнитронидолизинов.

Синтез нитроиндолизинов и подробный анализ масс-спектров будут опубликованы нами позднее. Авторы признательны докт. хим. каук П. Б. Терентьеву за полез-

ное обсуждение.

Экспериментальная часть. Масс-спектры получены на приборе МХ-1303 при энертии ионизации 70 эВ с прямым вводом образца в источник ионов.

СПИСОК ЛИТЕРАТУРЫ

1. Хмельницкий Р. А., Терентьев П. Б. — Усп. химии, 1979, 48, с. 854.
2. Schwarz Н. — Тор. Сигт. Сhem., 1978, 73, р. 231. 3. Соловьев О. А. Автореф. канд. дис. М., 1975. 4. Терентьев П. Б., Соловьев О. А., Хмельницкий Р. А., Громов С. П., Сагитуллин Р. С. — ХГС, 1982, вып. 6, с. 765.
5. Тафеенко В. А., Асланов Л. А. — ЖСХ, 1980, 21, с. 69.

Поступила в редакцию 28.12.83